How to Study Effectively!

To improve **learning** and **knowledge retention** you should:

- Avoid cramming by studying over several sessions
- Quiz yourself/peers on course material

The above article is a summarization of researched study methods and is a resource for students looking to improve their learning. John Dunlosky is a professor of psychology whose research focuses on self-regulated learning. This ‘student toolbox’ drew on two papers to support the notion of ‘practice testing’ and ‘distributed practice’ as two of the most effective studying strategies:

Study Design (Timeline):

- **At the end of the exam**
 - **Data Analysis**
 - **Questionnaire**
 - **Intro Psych Class**

Key Results:
- The study method titled “testing self-knowledge” was found to be one of the strongest predictors of exam performance.
- Even though it was beneficial, self-testing was one of the least used study methods among the surveyed undergraduate students.

Study Design:
- Nicholas J. Cepeda conducted this meta-analysis collecting studies that focused on the effects of both distributed and massed practice on learning, as well as the two study methods in comparison.
- Any studies included in this meta-analysis had to align with a series of inclusion criteria such as performance assessments through recall tests and learning through verbal memory tasks.
Key Results:
- There was an average observed benefit from distributed practice (over massed practice) in these studies of around 15%,
- Trying to learn within a single day or within a single study session impairs learning
- Distributing study sessions across several days improves both retention and academic performance
Strengthening the Student Toolbox
Study Strategies to Boost Learning

By John Dunlosky

It’s the night before her biology exam, and the high school student has just begun to study. She takes out her highlighter and reads her textbook, marking it up as she goes along. She rereads sentences that seem most important and stays up most of the night, just hoping to get a good enough grasp of the material to do well on the exam. These are study strategies that she may have learned from her friends or her teachers or that she simply took to on her own. She is not unusual in this regard; many students rely on strategies such as highlighting, rereading, and cramming the night before an exam.

Quite often, students believe these relatively ineffective strategies are actually the most effective, and at least on the surface they do seem sound, perhaps because, even after pulling an all-nighter, students manage to squeak by on exams. Unfortunately, in a recent review of the research, my colleagues and I found that these strategies are not that effective, especially if students want to retain their learning and understanding of content well after the exam is over—obviously, an important educational goal.

So, why aren’t students learning about the best strategies? I can only speculate, but several reasons seem likely. Curricula are developed to highlight the content that teachers should teach, so the focus is on providing content and not on training students how to effectively acquire it. Put differently, the emphasis is on what students need to learn, whereas little emphasis—if any—is placed on training students how they should go about learning the content and what skills will promote efficient studying to support robust learning. Nevertheless, teaching students how to learn is as important as teaching them content, because acquir-
ing both the right learning strategies and background knowledge is important—if not essential—for promoting lifelong learning.

Another reason many students may not be learning about effective strategies concerns teacher preparation. Learning strategies are discussed in almost every textbook on educational psychology, so many teachers likely have been introduced to at least some of them. Even so, my colleagues and I found that, in large part, the current textbooks do not adequately cover the strategies; some omit discussion of the most effective ones, and most do not provide guidelines on how to use them in the classroom or on how to teach students to use them. In some cases, the strategies discussed have limited applicability or benefit. So I sympathize with teachers who want to devote some class time to teaching students how to learn, because teacher preparation typically does not emphasize the importance of teaching students to use effective learning strategies. Moreover, given the demands of day-to-day teaching, teachers do not have time to figure out which strategies are best.

The good news is that decades of research has focused on evaluating the effectiveness of many promising strategies for helping students learn. Admittedly, the evidence for many of these strategies is immense and not easily deciphered, especially given the technical nature of the literature. Thus, to help promote the teaching and use of effective learning strategies, my colleagues* and I reviewed the efficacy of 10 learning strategies:

1. Practice testing: self-testing or taking practice tests on to-be-learned material.
2. Distributed practice: implementing a schedule of practice that spreads out study activities over time.
3. Interleaved practice: implementing a schedule of practice that mixes different kinds of problems, or a schedule of study that mixes different kinds of material, within a single study session.
4. Elaborative interrogation: generating an explanation for why an explicitly stated fact or concept is true.
5. Self-explanation: explaining how new information is related to known information, or explaining steps taken during problem solving.
6. Rereading: restudying text material again after an initial reading.
7. Highlighting and underlining: marking potentially important portions of to-be-learned material while reading.
8. Summarization: writing summaries (of various lengths) of to-be-learned texts.
10. Imagery for text: attempting to form mental images of text materials while reading or listening.

Before describing the strategies in detail, I will put into context a few aspects of our review. First, our intent was to survey strategies that teachers could coach students to use without sacrificing too much class time and that any student could use. We excluded a variety of strategies and computer-driven tutors that show promise but require technologies that may be unavailable to many students. Although some of the strategies we reviewed can be implemented with computer software, they all can be used successfully by a motivated student who (at most) has access to a pen or pencil, some index cards, and perhaps a calendar.

Second, we chose to review some strategies (e.g., practice testing) because an initial survey suggested that they were relatively effective, whereas we chose other strategies (e.g., rereading, highlighting) because students reported using them often yet we wondered about their effectiveness.

Finally, the strategies differ somewhat with respect to the kinds of learning they promote. For instance, some strategies (e.g., keyword mnemonic, imagery for text) are focused on improving students’ memory for core concepts or facts. Others (e.g., self-explanation) may best serve to promote students’ comprehension of what they are reading. And still others (e.g., practice testing) appear to be useful for enhancing both memory and comprehension.

In the following sections, I discuss each of the learning strategies, beginning with those that show the most promise for improving student achievement.

The Most Effective Learning Strategies

We rated two strategies—practice testing and distributed practice—as the most effective of those we reviewed because they can help students regardless of age, they can enhance learning and comprehension of a large range of materials, and, most important, they can boost student achievement.

*My collaborators on this project were cognitive and educational researchers Katherine A. Rawson, Elizabeth J. Marsh, Mitchell J. Nathan, and Daniel T. Willingham. Willingham regularly contributes to American Educator in his “Ask the Cognitive Scientist” column.
Practice Testing

Test, exam, and quiz are four-letter words that provoke anxiety in many students, if not some teachers as well. Such anxiety may not be misplaced, given the high stakes of statewide exams. However, by viewing tests as the end-all assessments administered only after learning is complete, teachers and students are missing out on the benefits of one of the most effective strategies for improving student learning.

In 1909, a doctoral student at the University of Illinois demonstrated that practice tests improve student performance, and more than 100 years of research has revealed that taking practice tests (versus merely rereading the material to be learned) can substantially boost student learning. For instance, college students who reported using practice tests to study for upcoming exams earned higher grades, and when middle school teachers administered daily practice tests for class content, their students performed better on future tests that tapped the content they had practiced during the daily tests.

All of the strategies we reviewed can be used successfully by a motivated student who (at most) has access to a pen or pencil, some index cards, and perhaps a calendar.

The use of practice tests can improve student learning in both direct and indirect ways. Consider two students who have just read a chapter in a textbook: Both students review the most important information in the chapter, but one student reads the information again, whereas the other student hides the answers and attempts to recall the information from memory. Compared with the first student, the second student, by testing himself, is boosting his long-term memory. Thus, unlike simply reading a text, when students correctly retrieve an answer from memory, the correct retrieval can have a direct effect on memory.

Practice tests can also have an indirect effect on student learning. When a student fails to retrieve a correct answer during a practice test, that failure signals that the answer needs to be restudied; in this way, practice tests can help students make better decisions about what needs further practice and what does not. In fact, most students who use practice tests report that they do so to figure out what they know and do not know.

Based on the prevailing evidence, how might students use practice tests to best harness the power of retrieval practice? First, student learning can benefit from almost any kind of practice test, whether it involves completing a short essay where students need to retrieve content from memory or answering questions in a multiple-choice format. Research suggests, however, that students will benefit most from tests that require recall from memory, and not from tests that merely ask them to recognize the correct answer. They may need to work a bit harder to recall key materials (especially lengthy ones) from memory, but the payoff will be great in the long run. Another benefit of encouraging students to recall key information from memory is that it does not require creating a bank of test questions to serve as practice tests.

Second, students should be encouraged to take notes in a manner that will foster practice tests. For instance, as they read a chapter in their textbook, they should be encouraged to make flashcards, with the key term on one side and the correct answer on the other. When taking notes in class, teachers should encourage students to leave room on each page (or on the back pages of notes) for practice tests. In both cases, as the material becomes more complex (and lengthy), teachers should encourage students to write down their answers when they are testing themselves. For instance, when they are studying concepts on flashcards, they should first write down the answer (or definition) of the concept they are studying, and then they should compare their written answer with the correct one. For notes, they can hide key ideas or concepts with their hand and then attempt to write them out in the remaining space; by using this strategy, they can compare their answer with the correct one and easily keep track of their progress.

Third, and perhaps most important, students should continue testing themselves, with feedback, until they correctly recall each concept at least once from memory. For flashcards, if they correctly recall an answer, they can pull the card from the stack; if they do not recall it correctly, they should place it at the back of the stack. For notes, they should try to recall all of the important ideas and concepts from memory, and then go back through their notes once again and attempt to correctly recall anything they did not get right during their first pass. If students persist until they recall each idea or concept correctly, they will enhance their chances of remembering the concepts during the actual exam. They should also be encouraged to “get it right” on more than one occasion, such as by returning to the deck of cards on another day and relearning the materials. Using practice tests may not come naturally to students, so teachers can play an important role in informing them about the power of practice tests and how they apply to the content being taught in class.

Not only can students benefit from using practice tests when studying alone, but teachers can give practice tests in the classroom. The idea is for teachers to choose the most important ideas and then take a couple minutes at the beginning or end of each class to test students. After all students answer a question, teachers can provide the correct answer and give feedback. The more closely the practice questions tap the same information that will be tested on the in-class examination, the better students will do. Thus, this in-class “testing time” should be devoted to the most critical information that will appear on the actual exam. Even using the same questions during practice and during the test is a reasonable strategy. It not only ensures that the students will be learning what teachers have decided is most important, but also affirms to students that they should take the in-class practice quizzes seriously.

Distributed Practice

A second highly effective strategy, distributed practice is a straightforward and easy-to-use technique. Consider the following examples:

A first-grader studies for a spelling test. Using a worksheet to guide her practice, she might take one of two approaches. She
could practice spelling the words by writing each one several times directly below the word printed on the sheet. After practicing one word repeatedly, she would move on to the next one and practice writing that word several times below it. This kind of practice is called massed practice, because the student practices each word multiple times together, before moving to the next one.

An alternative strategy for the student would be to practice writing each word only once, and after transcribing the final word, going back and writing each one again, and so forth, until the practice is complete. This kind of practice is called distributed practice, because practice with any one word is distributed across time (and the time between practicing any one word is filled with another activity—in this case, writing other words).

In this example, the student either masses or distributes her practices during a single session. Now, imagine an eighth-grader trying to learn some basic concepts pertaining to geology for an upcoming in-class exam. He might read over his notes diligently, in a single session the night before the exam, until he thinks he is ready for the test—a study tactic called cramming, which practically all students use. Or, as an alternative, he might study his notes and texts during a shorter session several evenings before the exam and then study them again the evening before. In this case, the student distributes his studying across two sessions.

Students will retain knowledge and skills for a longer period of time when they distribute their practice than when they mass it, even if they use the same amount of time massing and distributing their practice. Unfortunately, however, many students believe that massed practice is better than distributed practice.

One reason for this misconception is that students become familiar and facile with the target material quickly during a massed practice session, but learning appears to proceed more slowly with distributed practice. For instance, the first-grader quickly writes the correct word after practicing it several times in succession, but when the same practice is distributed, she may still struggle after several attempts. Likewise, the eighth-grader may quickly become familiar with his notes after reading them twice during a single session, but when distributing his practice across two study sessions, he may realize how much he has forgotten and use extra time getting back up to speed.

In both cases, learning itself feels tougher when it is distributed instead of massed, but the competency and learning that students may feel (and teachers may see) during massed practice is often ephemeral. By contrast, distributed practice may take more effort, but it is essential for obtaining knowledge in a manner that will be maintained (or easily relearned) over longer, educationally relevant periods of time.

Most students, whether they realize it or not, use distributed practice to master many different activities, but not when they are studying. For instance, when preparing for a dance recital, most would-be dancers will practice the routine nightly until they have it down; they will not just do all the practice the night before the recital, because everyone knows that this kind of practice will likely not be successful. Similarly, when playing video games, students see their abilities and skills improve dramatically over time in large part because they keep coming back to play the game in a distributed fashion. In these and many other cases, students realize that more practice or play during a current session will not help much, and they may even see their performance weaken near the end of a session, so, of course, they take a break and return to the activity later. However, for whatever reason, students don’t typically use distributed practice as they work toward mastering course content.

The use of practice tests can improve student learning in both direct and indirect ways.

Not using distributed practice for study is unfortunate, because the empirical evidence for the benefits of distributed (over massed) practice is overwhelming, and the strategy itself is relatively easy to understand and use. Even so, I suspect that many students will need to learn how to use it, especially for distributing practice across multiple sessions. The difficulty is simply that most students begin to prepare and study only when they are reminded that the next exam is tomorrow. By that point, cramming is their only option. To distribute practice over time, students should set aside blocks of time throughout each week to study the content for each class. Each study block will be briefer than an all-night cram session, and it should involve studying (and using practice tests) for material that was recently introduced in class and for material they studied in previous sessions.

To use distributed practice successfully, teachers should focus on helping students map out how many study sessions they will

need before an exam, when those sessions should take place (such as which evenings of the week), and what they should practice during each session. For any given class, two short study blocks per week may be enough to begin studying new material and to restudy previously covered material.

Students will retain knowledge for a longer period of time when they distribute their practice than when they mass it.

Ideally, students will use practice tests to study the previously covered material. If they do, they will quickly retrieve the previously learned material after just a handful of sessions, which will leave more time for studying new material. Of course, students may need help setting up their study schedules (especially when they are younger), and they may need some encouragement to use the strategy. But by using distributed practice (especially if it is combined with practice testing), many students will begin to master material they never thought they could learn.

Teachers can also use distributed practice in the classroom. The idea is to return to the most important material and concepts repeatedly across class days. For instance, if weekly quizzes are already being administered, a teacher could easily include content that repeats across quizzes so students will relearn some concepts in a distributed manner. Repeating key points across lectures not only highlights the importance of the content but also gives students distributed practice. Administering a cumulative exam that forces students to review the most important information is another way to encourage them to study content in a distributed fashion. Admittedly, using cumulative exams may seem punitive, but if the teacher highlights which content is most likely to be retested (because it is the most important content for students to retain), then preparing for a cumulative exam does not need to be daunting. In fact, if students continue to use a distributed practice schedule throughout a class, they may find preparing for a final cumulative exam to be less difficult than it would be otherwise because they will already be well versed in the material.

Strategies with Much Promise

We rated three additional strategies as promising but stopped short of calling them the most effective because we wanted to see additional research about how broadly they improve student learning.

Interleaved Practice

Interleaved practice involves not only distributing practice across a study session but also mixing up the order of materials across different topics. As I discussed above, distributed practice trumps massed practice, but the former typically refers to distributing the practice of the same problem across time. Thus, for spelling, a student would benefit from writing each word on a worksheet once, and then cycling through the words until each has been spelled correctly several times. Interleaved practice is similar to distributed practice in that it involves spacing one’s practice across time, but it specifically refers to practicing different types of problems across time.

Consider how a standard math textbook (or most any science textbook) encourages massed practice: In a text for pre-algebra, students may learn about adding and subtracting real numbers, and then spend a block of practice adding real numbers, followed by a block of practice subtracting. The next chapter would introduce multiplying and dividing real numbers, and then practice would focus first on multiplying real numbers, and then on dividing them, and so forth. Thus, students are massing their practice of similar problems. They practice several instances of one type of math problem (e.g., addition) before practicing the next type (e.g., subtraction). In this example, interleaving would involve solving one problem from each type (adding, subtracting, multiplying, and dividing) before solving a new problem from each type.

One aspect of massed practice that students may find appealing is that their performance will quickly improve as they work with a particular problem. Unfortunately, such fluent performance can be misleading; students believe that they have learned a problem well when in fact their learning is fleeting.

Interleaved practice has not been explored nearly as much as practice tests or distributed practice, but initial research outcomes have shown that interleaved practice can dramatically improve student achievement, especially in the domain of problem solving.

A study in which college students learned to compute the volume of four different geometric solids illustrates this advantage. In two practice sessions (separated by a week), a student either had massed practice or interleaved practice. For massed practice, students had a brief tutorial on solving for the volume...
of one kind of solid (e.g., a wedge), and then immediately practiced solving for the volume of four different versions of the particular solid (e.g., finding the volume of four different wedges). They then received a tutorial on finding the volume of another kind of solid (e.g., a spherical cone), and immediately practiced solving four versions of that solid (e.g., finding the volume of four different spherical cones). They repeated this massed practice for two more kinds of solids.

For interleaved practice, students first were given a tutorial on how to solve for the volume of each of the four solids, and then they practiced solving for each of the four versions of solids in turn. They never practiced the same kind of solid twice in a row; they practiced solving for the volume of a wedge, followed by a spherical cone, followed by a spheroid, and so forth, until they had practiced four problems of each type. Regardless of whether practice was massed or interleaved, all students practiced solving four problems of each type.

How did the students fare? The results presented in Figure 1 (on the right) show that during the practice sessions, performance finding the correct volumes was considerably higher for massed practice than for interleaved practice, which is why some students (and teachers) may prefer massed practice. The reason not to stick with massed practice is revealed when we examine performance on the exam, which occurred one week after the final practice session. As shown in the bars on the far right of Figure 1, students who massed practice performed horribly. By contrast, those who interleaved did three times better on the exam, and their performance did not decline compared with the original practice session! If students who interleaved had practiced just a couple more times, no doubt they would have performed even better, but the message is clear: massed practice leads to quick learning and quick forgetting, whereas interleaved practice slows learning but leads to much greater retention.

Research shows that teachers can also use this promising strategy with their students. Across 25 sessions,14 college students with poor math skills were taught algebra rules, such as how to multiply variables with exponents, how to divide variables with exponents, and how to raise variables with exponents to a power. In different sessions, either a single rule was introduced or a rule that had already been introduced was reviewed. Most important, during review sessions, students either (a) practiced the rule from the previous session (which was analogous to massed practice), or (b) practiced the rule from the previous session intermixed with the practice of rules from even earlier sessions (which was analogous to interleaved practice).

During the first practice sessions, the two groups achieved at about the same level. By contrast, on the final test, performance was substantially better for students who had interleaved practice than for those who had massed practice. This interleaving advantage was evident both for application of the rules to new algebra problems (i.e., different versions of those that the students had practiced) and on problems that required the novel combination of rules. Given that the review sessions were basically practice tests, one recommendation is sound: when creating practice tests for students (whether to be completed in class or at home), it is best to mix up problems of different kinds. Even though students initially may struggle a bit more, they will benefit in the long run.

Why does interleaving work so well? In contrast to massed practice, interleaving problems requires distributing practice, which by itself benefits student achievement. Moreover, massed practice robs students of the opportunity to practice identifying problems, whereas interleaved practice forces students to practice doing so. When students use massed practice, after they correctly solve a problem or two of a certain type, they can almost robotically apply the same steps to the next problem. That is, they do not have to figure out what kind of problem they are solving; they just have to apply the same rules to the next prob-

For interleaved practice, when a new problem is presented, students need to first figure out which kind of problem it is and what steps they need to take to solve it.

Figure 1

Differences in Performance When Students Used Massed Practice versus Interleaved Practice

![Graph showing differences in performance between massed and interleaved practice](image-url)

Accuracy at solving problems during practice session and on the delayed criterion test.

For interleaving, when a new problem is presented, students need to first figure out which kind of problem it is and what steps they need to take to solve it. This is often a difficult aspect of solving problems.

Interleaving has been shown to improve performance (as compared with massed practice) in multiple domains, including fourth-graders learning to solve math problems, engineering students learning to diagnose system failures, college students learning artists’ styles, and even medical students learning to interpret electrocardiograms to diagnose various diseases. Nevertheless, the benefits do not extend to all disciplines; for instance, in one study, college students learned French vocabulary from different categories (body parts, dinnerware, foods, etc.), and students did just as well when their practice was massed within a category as when it was interleaved across categories. In another study, interleaving did not help high school students learn various rules for comma usage.

Certainly, much more research is needed to better understand when interleaving will be most effective. Nevertheless, interleaved practice has shown more than enough promise for boosting student achievement to encourage its use, especially given that it does not hurt learning. To that end, I suggest that teachers revise worksheets that involve practice problems, by rearranging the order of problems to encourage interleaved practice. Also, for any in-class reviews, teachers should do their best to interleave questions and problems from newly taught materials with those from prior classes. Doing so not only will allow students to practice solving individual problems, but it also will help them practice the difficult tasks of identifying problems and choosing the correct steps needed to solve them.

Elaborative Interrogation and Self-Explanation

Elaborative interrogation and self-explanation are two additional learning strategies that show a lot of promise. Imagine a student reading an introductory passage on photosynthesis: “It is a process in which a plant converts carbon dioxide and water into sugar, which is its food. The process gives off oxygen.” If the student were using elaborative interrogation while reading, she would try to explain why this fact is true. In this case, she might think that it must be true because everything that lives needs some kind of food, and sugar is something that she eats as food. She may not come up with exactly the right explanation, but trying to elaborate on why a fact may be true, even when the explanations are not entirely on the mark, can still benefit understanding and retention.

Students who solve new problems that involve transferring what was learned during practice perform better when they use self-explanation techniques.

If the student were using self-explanation, then she would try to explain how this new information is related to information that she already knows. In this case, perhaps she might consider how the conversion is like how her own body changes food into energy and other (not-so-pleasant-as-oxygen) fumes. Students can also self-explain when they solve problems of any sort and decide how to proceed; they merely explain to themselves why they made a particular decision.

While practicing problems, the success rate of solving them is no different for students who self-explain their decisions compared with those who do not. However, in solving new problems that involve transferring what one has learned during practice, those who initially used self-explanation perform better than those who did not use this technique. In fact, in one experiment where students learned to solve logical-reasoning problems, final test performance was three times better (about 90 percent versus less than 30 percent) for students who self-explained during practice than for those who did not.

One reason these two strategies can promote learning and comprehension and boost problem-solving performance is that they encourage students to actively process the content they are focusing on and integrate it with their prior knowledge. Even young students should have little trouble using elaborative interrogation, because it simply involves encouraging them to ask the question “why?” when they are studying. The difference between this type of “why” and the “why” asked in early childhood (when this is a common question to parents) is that students must take the time to develop answers. This strategy may be especially useful as students are reading lengthy texts in which a set of concepts
builds across a chapter, although admittedly the bulk of the research on elaborative interrogation has been conducted with isolated facts. At a minimum, the research has shown that encouraging students to ask “why” questions about facts or simple concepts that arise in class and in lengthy discussions benefits their learning and understanding.

In most of the research on self-explanation, students are given little instruction on how to use the strategy; instead, they are just told to use a particular question prompt that is most relevant to what they are studying. For instance, if they are solving a problem, they might be instructed to ask themselves, “Why did I just decide to do X?” (where X is any move relevant to solving the problem at hand). And if they were reading a text, they might be instructed to ask, “What does this sentence mean to me? What new information does the sentence provide, and how does it relate to what I already know?” To take full advantage of this strategy, students need to try to self-explain and not merely paraphrase (or summarize) what they are doing or reading, because the latter strategies (as I discuss below) do not consistently boost performance.

Rereading has inconsistent effects on student learning, and benefits may not be long-lasting.

Some potential limitations of using these strategies are rather intuitive. For instance, students with no relevant knowledge about a new content area may find it difficult—if not impossible—to use elaborative interrogation, because these students may not be able to generate any explanation about why a particular (new) fact is true.* Thus, although research shows that students as young as those in the upper elementary grades can successfully use elaborative interrogation, the technique may not be so useful for younger students with low levels of background knowledge. As students learn more about a particular topic, elaborative interrogation should be easier to use and will support more learning.

As for self-explanation, it should not be too difficult, or require much time, to teach most students how to take advantage of this strategy. Nevertheless, younger students or those who need more support may benefit from some coaching. For instance, as noted above, paraphrases and self-explanations are not the same and lead to different learning outcomes, so teachers should help younger students distinguish between an explanation of an idea and its paraphrase. Even so, a gentle reminder to use elaborative interrogation or self-explanation may be all most students need to do X?” (where X is any move relevant to solving the problem at hand). And if they were reading a text, they might be instructed to ask, “What does this sentence mean to me? What new information does the sentence provide, and how does it relate to what I already know?” To take full advantage of this strategy, students need to try to self-explain and not merely paraphrase (or summarize) what they are doing or reading, because the latter strategies (as I discuss below) do not consistently boost performance.

Rereading has inconsistent effects on student learning, and benefits may not be long-lasting.

Some potential limitations of using these strategies are rather intuitive. For instance, students with no relevant knowledge about a new content area may find it difficult—if not impossible—to use elaborative interrogation, because these students may not be able to generate any explanation about why a particular (new) fact is true.* Thus, although research shows that students as young as those in the upper elementary grades can successfully use elaborative interrogation, the technique may not be so useful for younger students with low levels of background knowledge. As students learn more about a particular topic, elaborative interrogation should be easier to use and will support more learning.

As for self-explanation, it should not be too difficult, or require much time, to teach most students how to take advantage of this strategy. Nevertheless, younger students or those who need more support may benefit from some coaching. For instance, as noted above, paraphrases and self-explanations are not the same and lead to different learning outcomes, so teachers should help younger students distinguish between an explanation of an idea and its paraphrase. Even so, a gentle reminder to use elaborative interrogation or self-explanation may be all most students need to keep them using these strategies as they learn new course content and prepare for examinations.

Because they show promise, I recommend that teachers tell their students about these strategies and explain the conditions under which each may be most useful. For instance, they might instruct students to use elaborative interrogation when studying general facts about a topic, or to use self-explanation when reading or solving practice problems in math and science.

Teachers should keep in mind that these two strategies did not receive the highest rating in our team’s assessment of learning strategies. Our lower marks for these strategies, however, stemmed from the fact that we wanted to see even more evidence that established their promise in several key areas relevant to education. Only a couple of experiments have demonstrated that elaborative interrogation can improve students’ comprehension, and only a few investigations have established their efficacy within a classroom. So, in writing our review, we were conservative scientists who wanted every piece in place before declaring that a strategy is one that students should absolutely use. Nevertheless, other cognitive scientists who have studied the same evidence enthusiastically promote the use of these strategies, and as a teacher myself, the overall promise of these strategies is impressive enough that I encourage my students to use them.

Less Useful Strategies (That Students Use a Lot)

Besides the promising strategies discussed above, we also reviewed several others that have not fared so well when considered with an eye toward effectiveness. These include rereading, highlighting, summarizing, and using imagery during study.

Rereading and Highlighting

These two strategies are particularly popular with students. A survey conducted at an elite university revealed that 84 percent of the students studied by rereading their notes or textbooks. Despite its popularity, rereading has inconsistent effects on student learning: whereas students typically benefit from rereading

when they must later recall texts from memory, rereading does not always enhance students’ understanding of what they read, and any benefits of rereading (over just a single reading) may not be long-lasting. So, rereading may be relatively easy for students to do, but they should be encouraged to use other strategies (such as practice testing, distributed practice, or self-explanation) when they revisit their text and notes.

Students need to know that highlighting is only the beginning of the journey.

The use of highlighters seems universal—I even have a favorite one that I use when reading articles. As compared with simply reading a text, however, highlighting has been shown to have failed to help students of all sorts, including Air Force trainees, children, and undergraduate students. Even worse, one study reported that students who highlighted while reading performed worse on tests of comprehension wherein they needed to make inferences that required connecting different ideas across the text. In this case, by focusing on individual concepts while highlighting, students may have spent less time thinking about connections across concepts. Still, I would not take away highlighters from students; they are a security blanket for reading and studying. However, students need to know that highlighting is only the beginning of the journey, and that after they read and highlight, they should then restudy the material using more-effective strategies.

Summarization

Summarization involves paraphrasing the most important ideas within a text. It has shown some success at helping undergraduate students learn, although younger students who have difficulties writing high-quality summaries may need extensive help to benefit from this strategy.

In one study, teachers received 90 minutes of training on how to teach their students to summarize. The teachers were trained to provide direct instruction, which included explicitly describing the summarization strategy to students, modeling the strategy for students, having students practice summarizing and providing feedback, and encouraging students to monitor and check their work. Students completed five sessions (about 50 minutes each) of coaching, which began with them learning to summarize short paragraphs and slowly progressed to using the strategy to take effective notes and ultimately to summarize a text chapter. Students who received coaching recalled more important points from a chapter as compared with students who were not coached. And other studies have also shown that training students to summarize can benefit student performance.

Nevertheless, the need for extensive training will make the use of this strategy less feasible in many contexts, and although summarizing can be an important skill in its own right, relying on it as a strategy to improve learning and comprehension may not be as effective as using other less-demanding strategies.

Keyword Mnemonic and Imagery for Text

Finally, the last two techniques involve mental imagery (i.e., developing internal images that elaborate on what one is studying). Students who are studying foreign-language vocabulary, for example, may use images to link words within a pair (e.g., for the pair “la dent–tooth,” students may mentally picture a dentist (for “la dent”) extracting an extra-large tooth). This strategy is called keyword mnemonic, because it involves developing a keyword to represent the foreign term (in this case, “dentist” for “la dent”) that is then linked to the translation using mental imagery.

Imagery can also be used with more complex text materials as well. For instance, students can develop mental images of the content as they read, such as trying to imagine the sequence of processes in photosynthesis or the moving parts of an engine. This strategy is called imagery for text.

Mental imagery does increase retention of the material being studied, especially when students are tested soon after studying. However, research has shown that the benefits of imagery can be short-lived, and the strategy itself is not widely appli-
U sing learning strategies can increase student understanding and achievement. For some ideas on how the best strategies can be used, see the box “Tips for Using Effective Learning Strategies” (on the right). Of course, all strategies are not created equal. As shown in Table 1 (on page 20), while some strategies are broadly applicable and effective, such as practice testing and distributed practice, others do not provide much—if any—bang for the buck. Importantly, even the best strategies will only be effective if students are motivated to use them correctly, and even then, the strategies will not solve many of the problems that hamper student progress and success. With these caveats in mind, the age-old adage about teaching people to fish (versus just giving them a fish) applies here: teaching students content may help them succeed in any given class, but teaching them how to guide their learning of content using effective strategies will allow them to successfully learn throughout their lifetime.

Even the best strategies will only be effective if students are motivated to use them correctly.

Tips for Using Effective Learning Strategies

Based on our review of the literature, here are a handful of suggestions for teachers to help students take advantage of more-effective strategies:

- Give a low-stakes quiz at the beginning of each class and focus on the most important material. Consider calling it a “review” to make it less intimidating.
- Give a cumulative examination, which should encourage students to restudy the most important material in a distributed fashion.
- Encourage students to develop a “study plan,” so they can distribute their study throughout a class and rely less on cramming.
- Encourage students to use practice retrieval when studying instead of passively rereading their books and notes.
- Encourage students to elaborate on what they are reading, such as by asking “why” questions.
- Mix it up in math class: when assigning practice problems, be sure to mix problems from earlier units with new ones, so that students can practice identifying problems and their solutions.
- Tell students that highlighting is fine but only the beginning of the learning journey.

Endnotes

3. Dunlosky et al., “Improving Students’ Learning.”
18. Dunlosky et al., “Improving Students’ Learning.”
How Do Students Really Study (and Does It Matter)?

Regan A. R. Gurung
*Human Development and Psychology
University of Wisconsin, Green Bay*

Are specific study techniques better than others? I provide a method to answer this question that is easy to adapt for any course. I assessed 229 introductory psychology students’ use of 11 different study techniques and correlated their responses with their exam scores. Many, but not all, techniques related to better exam scores. Hours studied were positively related to exam scores but starting studying early and reading material prior to and after class were not. I also found detriments to studying (e.g., listening to music). Results provide a detailed picture of what students do when they study.

There are many different ways to study but not all methods may enhance learning. Although there is a sizeable literature on how students *should* study (Al-Hilawani & Sartawi, 1997; Fleming, 2002; Hattie, Biggs, & Purdie, 1996), not as much is known regarding how students actually do study. I assessed how students actually study and tested whether certain study habits were more conducive to learning than others.

Study skills can be divided into four main categories: repetition-based (e.g., flashcards and mnemonic devices such as “CANOE” for the Big 5 personality traits), cognitive-based (e.g., studying with a friend, group work), procedural (e.g., time management, organization, scheduling study routines), and metacognitive (e.g., taking quizzes to test self-knowledge; for more details, see Gettinger & Selbert, 2002). Empirical tests comparing these different methods are equivocal.

Some research suggests that the types of study techniques that a student uses affect exam performance (Bol, Warkentin, Nunnery, & O’Connell, 1999). Other research suggests that there is no one style that is useful for everyone and that a repertoire of techniques is best (Hadwin & Winne, 1996; Nist, Simpson, Olejnik, & Mealey, 1991). For example, repetition and rehearsal, which requires minimal amount of processing, may be useful only in remembering small amounts of information (Gettinger & Selbert, 2002). Memorizing facts and definitions do not correlate with students’ exam scores, but procedural and organizational-based skills, metacognitive-based skills, and skills that increase elaboration show positive correlations with test scores (Carney & Levin, 1998; Chen & Daehlher, 2000; Elliot, McGregor, & Gable, 1999; Motes & Wiegmann, 1999). Dickinson and O’Connell (1990) also showed that time spent organizing course material (e.g., taking notes on the textbook) related to test scores, whereas actual hours spent studying did not.

The existing literature does not include a comprehensive assessment of a wide variety of studying techniques, and it does not provide studies that both assess techniques and measure learning outcomes. Furthermore, students are often unaware that some of their habits, such as having music on while studying, may hurt their learning. This study provides a rich view of what students do by collectively assessing different behaviors. Consistent with the disparate literatures, I hypothesized that techniques aiding elaboration (e.g., using examples, mnemonics) and metacognition (e.g., self-testing) would predict higher exam scores, whereas those behaviors reducing elaboration (e.g., listening to music) would predict lower exam scores.

Method

Participants

Two hundred and twenty-nine students (169 women and 60 men) from a midsize midwestern university in two sections of my introductory psychology class participated in this study (participation was voluntary). The mean age was 19.26 ($SD = 3.91$). The majority of the students were freshmen (82%); the remainder were sophomores (7%), juniors (4%), and seniors (7%). The mean ACT score was 22 (range 10 to 31). I combined the data from both sections as exam grades were similar.

Notes

1. We thank Alejandro Lazarte and Jared Keeley for their assistance with statistical analysis.
2. Send correspondence to William Buskist, Psychology Department, Auburn University, Auburn, AL 36849–5214; e-mail: buskiwf@auburn.edu.

Materials

A questionnaire assessed study methods, distractions, and confidence with the material. I based items on previous research (Wade, Trathen, & Schraw, 1990; Winne & Jamieson-Noel, 2002) and feedback from small student focus groups (questionnaire available on request). I asked students which of 11 study methods they used (i.e., memorizing definitions, reading the text, reviewing figures, reviewing highlighted material in the text, testing self-knowledge, rewriting notes, taking notes on the text, mnemonics, studying with friends, reading the notes, rewriting notes) and the extent to which they used them on a 5-point scale ranging from 1 (never) to 5 (all the time). I also measured distractions (“Do you have music or the television on when studying?” and “Do you respond to instant messaging or e-mail while studying?”); the total hours students studied for the test; the number of days in advance that students started studying; how often they reviewed material before and after a class; and how well they believed they knew the material, understood the material, and how confident they were of their understanding of the material.

Procedure

I added the survey to the end of the last of four exams. After answering 65 multiple-choice questions, participants read instructions stating that the remaining questions on the exam sheet would assess their study habits. I told students that participation was voluntary and that the answers to the questions would not affect their class grades or exam scores.

Results

The majority of students reported studying between 4 to 6 hr for the final (45%). The rest studied between 1 to 3 hr (31%) and 7 to 9 hr (19%). A small number of students reported studying over 10 hr (5%). The frequency and duration for use of the 11 study techniques used in this study appear in Table 1.

The frequency of technique use and the duration of technique use were correlated with scores on students’ final exam. Partial correlations controlled for student ability (using ACT scores; zero-order correlations available on request). The more students memorized notes, $r(227) = .28, p < .001$; made up examples $r(227) = .20, p < .001$; read the book $r(227) = .21, p < .01$; read their notes, $r(227) = .18, p < .05$; used mnemonics, $r(227) = .15, p < .05$; and tested their knowledge, $r(227) = .28, p < .001$; the higher were their exam scores. No other techniques (i.e., frequency of use) significantly correlated with exam score.

In contrast to the significant correlations with frequency of use described previously, only the amount of time spent memorizing was significantly related to exam scores, $r(227) = .15, p < .05$. The global number of hours studied did relate to exam scores, $r(228) = .16, p < .05$.

All the distracters and not attending class negatively correlated with exam grades. Students who had music on, $r(226) = –.18, p < .01$; the television on, $r(226) = –.21, p < .01$; responded to e-mail, $r(226) = –.16, p < .05$; or who had friends around, $r(226) = –.13, p < .05$; when studying performed worse on the exam. Students who missed class also scored lower on the exam, $r(226) = –.27, p < .001$.

Table 1. Frequency and Duration of Use of the Main Study Techniques

<table>
<thead>
<tr>
<th>Study techniquea</th>
<th>Hours Spent</th>
<th>How Often</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Read your notes</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Read the text</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Think of mnemonic devices (e.g., “CANOE” for personality traits)</td>
<td>13</td>
<td>41</td>
</tr>
<tr>
<td>Rewrite notes and/or skim notes</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>Review highlighted information from text</td>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td>Memorize definitions through repetition (e.g., flashcards)</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>Review figures and tables in text</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td>Make up examples to understand material/incorporate into everyday life</td>
<td>16</td>
<td>43</td>
</tr>
<tr>
<td>Use concept checks, chapter-end questions to test knowledge</td>
<td>23</td>
<td>42</td>
</tr>
<tr>
<td>Take notes from the book</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>Study with a friend</td>
<td>43</td>
<td>29</td>
</tr>
<tr>
<td>Distracters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have the television on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have music on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have roommates/friends/family around</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respond to instant messaging/e-mail on the Internet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-reports level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understanding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

The results of this study provide a detailed picture of what students spent time on and how effective the different methods were. Not all techniques were effective—the most effective techniques were often not the ones used the most. For example, although the three most frequently used techniques (reading notes and the text, using mnemonics) correlated significantly with exam scores, one of the strongest predictors of exam scores, testing knowledge, was one of the least used techniques. Other techniques commonly used by students (rewriting notes, reviewing highlighted material and figures and tables in the text) did not relate to exam scores. Perhaps most important, the number of hours studied was only weakly associated with exam score. This finding suggests that how students study may be even more important than how long they study and provides a strong rationale for the use of this measure.

The effectiveness of many common study suggestions did not receive empirical support. Results such as these compel a closer look at the recommendations instructors make to their students. Instructors often provide study tips and urge students to use specific techniques, but the correlation between student grades and technique usage is not always significant and is often low. For example, Balch (2001) provided students with six tips (e.g., specific ways to take lecture notes and self-help quizzes) but, except for elaborative encoding, reported use and course grades were not significantly correlated.

The results provide strong empirical evidence of what students should not do. Students who skip class, listen to music, watch television, or use the Internet while studying performed worse on the exam. Although the data do not test the causality of the association between distractions and exam scores, making such data available to students on the first day of class may help them better design their study habits.

This study provides an easy method for individual instructors to assess how their students are preparing for exams. These findings may vary for instructors who use essay exams or different textbooks, but an instructor can modify this method to assess different levels of classes and for different types of exams. The results of this study and self-collected data with this tool will prepare instructors to advise students on how best to study to do well.

Limitations

Finals are a particularly stressful time of the semester, and studying during the last week of class may not be representative of how students study in general. The fact that the exam was not cumulative (similar to midterm exams) somewhat lessens the problem with this limitation. Having the students complete the assessment as part of the exam (and hence be identifiable) raises the potential for impression management and could contaminate responding. Finally, I made the assumption that exam scores equate to learning. It is possible that even the study techniques that did not significantly relate to exam scores did enhance learning, but this learning was not captured by my exam.

Although students use a variety of study techniques, they are not all effective. Furthermore, students are not using some useful techniques enough. How students prepare for tests can be a crucial element in their achievement. Because certain study techniques are more beneficial than others, instructors should help students more effectively prepare for exams by informing students about the techniques and modifying ways to best help students use the techniques. How students study does actually seem to matter.

References

Notes

1. The University of Wisconsin, Green Bay, Department of Human Development funded this research.
2. A portion of this study was presented at the American Psychological Society Meeting in Chicago in 2004.
3. I thank Heidi Rose and Jessica Peterson for their help collecting, analyzing, and discussing the data and Heather Bloch, Sarah Brill, and Ilinee Noppe for their helpful suggestions.
4. Send correspondence to Regan A. R. Gurung, Department of Human Development and Psychology, University of Wisconsin, Green Bay, 2420 Niolet Drive, MAC C318, Green Bay, WI 54311; e-mail: gurungr@uwgb.edu.
Distributed Practice in Verbal Recall Tasks: A Review and Quantitative Synthesis

Nicholas J. Cepeda
University of California, San Diego and
University of Colorado at Boulder

Harold Pashler, Edward Vul, and John T. Wixted
University of California, San Diego

Doug Rohrer
University of South Florida

The authors performed a meta-analysis of the distributed practice effect to illuminate the effects of temporal variables that have been neglected in previous reviews. This review found 839 assessments of distributed practice in 317 experiments located in 184 articles. Effects of spacing (consecutive massed presentations vs. spaced learning episodes) and lag (less spaced vs. more spaced learning episodes) were examined, as were expanding interstudy interval (ISI) effects. Analyses suggest that ISI and retention interval operate jointly to affect final-test retention; specifically, the ISI producing maximal retention increased as retention interval increased. Areas needing future research and theoretical implications are discussed.

Keywords: spacing effect, distributed practice, meta-analysis, interstudy interval, retention interval

In the late 1800s, researchers began to demonstrate benefits from distributed practice (Ebbinghaus, 1885/1964; Jost, 1897; Thorndike, 1912). Since then, the topic of temporal distribution of practice has become one of the mainstays of learning and memory research. Recent reviews have suggested that a benefit from distributed practice is often found both for verbal memory tasks, such as list recall, paired associates, and paragraph recall (Janiszewski, Noel, & Sawyer, 2003), and for skill learning, such as mirror tracing or video game acquisition (Donovan & Radosevic, 1999). The size of the distributed practice effect is often large. In spite of abundant evidence for distributed practice benefits, a number of empirical studies (e.g., Toppino & Gracen, 1985; Underwood, 1961; Underwood & Ekstrand, 1967) and a recent review of the literature (Donovan & Radosevic, 1999) concluded that longer spacing and/or lag intervals sometimes failed to benefit retention. The present review explores the effects of distribution of practice upon retention of verbal information and seeks to elucidate the conditions under which distributed practice does and does not benefit retention.

Terminology

The distributed practice effect refers to an effect of interstudy interval (ISI) upon learning, as measured on subsequent tests. ISI is the interval separating different study episodes of the same materials. In the most typical spacing study, there are two study episodes separated by an ISI and some retention interval separating the final study episode and a later test. Generally, the retention interval is fixed, and performance is compared for several different values of the ISI. In studies with more than two study episodes, retention interval still refers to the interval between the last of these study episodes and the final test.

When the study time devoted to any given item is not subject to any interruptions of intervening items or intervening time, learning is said to be massed (i.e., item A stays on the screen for twice as long as it would for a spaced presentation, without disappearing between presentations or disappearing for less than 1 s, such as the length of time it takes a slide projector to change slides). In contrast, learning is spaced or distributed when a measurable time lag (1 s or longer) separates study episodes for a given item—that is, either (a) item A appears, item A disappears for some amount of time, and then item A reappears or (b) item A appears, item A disappears, item B (item C, etc.) appears and disappears, and then item A reappears. For example, if a list of 20 items is presented twice, and there are no delays between each consecutive presentation of the list, learning episodes for any given item are spaced (on average) by 20 items, and this would be described as spaced learning. Learning is considered to be massed only when presentations of a given item in a list are separated by 0 items and a time lag of less than 1 s. During massed learning, the participant sees a single presentation of the item for twice the presentation time of a comparable spaced item. The term spacing effect refers to enhanced learning during spaced as compared with massed study episodes for a given item. In contrast, the term lag effect refers to
comparisons of different levels of spacing, either differing numbers of items (e.g., Thios & D’Agostino, 1976) or differing amounts of time (e.g., Tzeng, 1973). We use the generic term distributed practice to encompass both spacing and lag effects, without distinguishing between them.

As noted above, studies of distributed practice must include at least two, but may include more than two, learning episodes. When three or more learning episodes are presented, the ISIs may be equal (fixed), progressively longer (expanding), or progressively shorter (contracting).

Past Quantitative Reviews

The literature on distributed practice is vast, and the topic has been qualitatively reviewed in a number of books and articles (e.g., Crowder, 1976; Dempster, 1989; Greene, 1992; McGeoch & Irion, 1952; Ruch, 1928). Quantitative reviews are fewer in number: Four major quantitative reviews of distributed practice appear to exist (Donovan & Radosievich, 1999; Janiszewski, Noel, & Sawyer, 2003; T. D. Lee & Genovese, 1988; Moss, 1996). The authors of these articles all concluded that distributed practice produces an overall increase in retention, and they argued that the effect is moderated by several important variables. This section summarizes each of these reviews and highlights some of the questions that remain unanswered.

Moss (1996) reviewed 120 articles on the distributed practice effect, across a wide range of tasks. She partitioned data by age of participant and type of material (verbal information, intellectual skills, or motor learning). For each study, Moss determined the direction of effect, if any. She concluded that longer ISIs facilitate learning of verbal information (e.g., spelling) and motor skills (e.g., mirror tracing); in each case, over 80% of studies showed a distributed practice benefit. In contrast, only one third of intellectual skill (e.g., math computation) studies showed a benefit from distributed practice, and half showed no effect from distributed practice.

T. D. Lee and Genovese’s (1988) review of 47 articles on distributed practice in motor skill learning. Distributed practice improved both acquisition and retention of motor skills. (Acquisition refers to performance on the final learning trial, and retention refers to performance after a retention interval). T. D. Lee and Genovese’s findings dispute those of a prior review by Adams (1987; see also Doré & Hilgard, 1938; Irion, 1966). Adams’s review concluded that distributed practice has little or no effect on acquisition of motor skills. In the 1960s, Hull’s (1943) learning theory was shown to poorly account for existing data. Adams suggests that this discovery caused most researchers to stop studying the effects of distributed practice on motor learning. In contrast to Adams’s claims and the 1960s negation of Hull’ theory, both T. D. Lee and Genovese’s (1988) review and Hull’s theory suggested that distributed practice should improve motor learning.

In their meta-analysis of the distributed practice literature, Donovan and Radosievich (1999) inspected 63 articles that used a wide range of tasks. They examined the effects of several moderators: methodological rigor (on a 3-point scale), mental requirements (low or high, based on whether “mental or cognitive skills” [p. 798] were required for task performance), overall complexity (low, average, or high, based on the “number of distinct behaviors” [p. 798] required to perform the task), ISI (less than 1 min, 1–10 min, 10 min–1 hr, and greater than 1 day), and retention interval (less than or greater than 1 day). The largest effect sizes were seen in low rigor studies with low complexity tasks (e.g., rotary pursuit, typing, and peg reversal), and retention interval failed to influence effect size. The only interaction Donovan and Radosievich examined was the interaction of ISI and task domain. It is important to note that task domain moderated the distributed practice effect; depending on task domain and lag, an increase in ISI either increased or decreased effect size. Overall, Donovan and Radosievich found that increasingly distributed practice resulted in larger effect sizes for verbal tasks like free recall, foreign language, and verbal discrimination, but these tasks also showed an inverse-U function, such that very long lags produced smaller effect sizes. In contrast, increased lags produced smaller effect sizes for skill tasks like typing, gymnastics, and music performance. Thus, the current article is the first review article to suggest that distributed practice intervals can become too long, regardless of task domain. Their analysis omitted many articles that met their inclusion criteria (by our count, at least 55 articles that were published before 1999), and only about 10% of their sample used verbal memory tasks.

Janiszewski et al. (2003) performed the most extensive examination of distributed practice moderators to date; they focused on 97 articles from the verbal memory task literature. Five factors failed to influence effect size: verbal versus pictorial stimuli, novel versus familiar stimuli, unimodal versus bimodal stimulus presentation (e.g., auditory vs. auditory plus visual), structural versus semantic cue relationships, and isolated versus context-embedded stimuli. Five factors influenced effect size magnitude: lag (longer ISIs increased effect size), stimulus meaningfulness (meaningful stimuli showed a larger effect size than nonmeaningful stimuli), stimulus complexity (semantically complex stimuli showed a larger effect size than structurally complex or simple stimuli), learning type (intentional learning produced a larger effect size than incidental learning), and complexity of intervening material (intervening material that was semantically complex led to a larger effect size than intervening material that was structurally complex or simple). Unfortunately, Janiszewski et al. did not examine retention interval effects. Even though they focused on verbal memory tasks, there is only partial overlap between the articles used in Janiszewski et al.’s meta-analysis and those used in the present meta-analysis (47 articles were used in both). Partial overlap occurred in part because Janiszewski et al. chose to include studies that used reaction time, frequency judgments, and recognition memory as final-test learning measures, whereas we did not.

Summary of Past Quantitative Reviews

In summary, quantitative syntheses of the temporal distribution of practice literature have suggested that a benefit from longer ISIs is a fairly robust effect. Beyond that, however, few firm conclusions seem warranted. For example, Donovan and Radosievich’s (1999) review suggested that increasingly distributed practice improves learning, seemingly counter to Janiszewski et al.’s (2003) review, which concluded that increasingly distributed practice improved retention. Upon closer observation of Donovan and Radosievich’s findings, skill acquisition studies showed decreased final-test learning with longer ISIs, and verbal memory tasks showed nonmonotonic effects of ISI on final-test learning (final-test performance improved as ISI increased from a few minutes to an hour and decreased as ISI reached 1 day or longer). Donovan and Radosievich’s review suggested that retention interval has no...
effect is on the magnitude of the distributed practice effect. This conclusion is at variance with a number of individual experimental findings (e.g., Balota, Duchek, & Paullin, 1989; Bray, Robbins, & Witcher, 1976; Glenberg, 1976; Glenberg & Lehmann, 1980; see Crowder, 1976, for a useful discussion). Notably, Donovan and Radosевич failed to include in their meta-analysis many studies that showed retention interval effects. Even though distributed practice benefits are robust, temporal moderators affect distributed practice through a complex interplay of time and task.

Given the heterogeneity of studies included in prior syntheses, the omission of relevant studies, and the disparate conclusions of these syntheses, one might wonder whether they paint an accurate composite picture of the literature as a whole. In addition, prior syntheses have examined the joint impact of ISI and retention interval in a cursory fashion. If there is a complex interplay between ISI and retention interval, as some of the experimental studies cited in the previous paragraph would suggest, then this is likely to be of substantial import both for practical applications and for theoretical issues. The practical relevance is obvious: One can hardly select an ISI that optimizes instruction unless one knows how learning depends upon ISI; if that function varies with retention interval, this too must be considered in designing the most efficient procedures for pedagogy or training. Theories of the distributed practice effect are incomplete unless they can account for joint effects of ISI, retention interval, and task.

Learning and Relearning Confounds

One potentially critical factor that has been overlooked in past quantitative reviews of the distributed practice effect—potentially undermining many of the conclusions drawn—is the highly variable choice of training procedures used in the second and subsequent learning sessions. In many studies, including some deservingly well-cited research in this area (e.g., Bahrick, 1979; Bahrick & Phelps, 1987), participants were trained to a criterion of perfect performance on all items during the second and subsequent learning sessions. With this procedure, an increase in ISI inevitably increases the amount of training provided during the second or subsequent sessions. (This is because a longer ISI results in more forgetting between training sessions, thus necessitating a greater number of relearning trials to reach criterion.) Thus, in designs that have this feature, distribution of practice is confounded with the amount of practice time during the second (and subsequent) session. This makes it impossible to know whether differences in final-test performance reflect distributed practice effects per se. To avoid this confound, the number of relearning trials must be fixed. (Either training to a criterion of perfect performance during the first learning session or providing a fixed number of learning trials during the first learning session and then presenting items, with feedback, a fixed number of times during the second and subsequent learning sessions seems to us a reasonable way to equalize initial learning without introducing a relearning confound.)

Current Meta-Analysis

Our goal in the present article is to perform a quantitative integrative review of the distributed practice literature, tailored to shed light on the critical temporal and procedural variables discussed above. To examine ISI effects, we examined the degree of benefit produced by shorter and longer temporal gaps between learning episodes. We assessed joint effects of ISI and retention interval by examining ISI effects separately for a number of different retention intervals. Final-test performances following expanding versus fixed ISIs also were compared. In addition to providing additional clarity on the temporal variables just described, another goal of the present study was to pinpoint, for future research, important areas in which present distributed practice knowledge is severely limited. Although the literature on distributed practice is indeed very large, the present review discloses (in ways that previous reviews have not) how sorely lacking it is in the very sorts of information that are most needed if serious practical benefits are to be derived from this century-long research tradition.

We restricted our analysis to verbal memory tasks, in the broadest sense. These have been used in by far the greatest number of studies of distributed practice (Moss, 1996). This restriction was introduced because of the enormous heterogeneity of tasks and performance measures used in the remainder of the distributed practice literature. It seemed unlikely that the literature would allow meaningful synthetic conclusions to be drawn from any other single category of tasks or studies. Unlike previous reviewers, we restricted our review to studies using recall as a performance measure; we did not review studies that used performance measures like recognition or frequency judgments. To address potential relearning confounds, we examined the effects of providing different numbers of learning trials during the second session.

Method

Literature Search

Articles included in this analysis were selected by Nicholas J. Cepeda using several sources. Lists of potential articles were given to Nicholas J. Cepeda by Harold Pashler, Edward Vul, John T. Wixted, and Doug Rohrer, on the basis of past literature searches for related studies. PsycINFO (1872–2002) and/or ERIC (1966–2002) were searched with a variety of keywords. A partial list of keyword includes “spacing effect,” “distrubited practice,” “spac* mass* practice,” “spac* mass* learning,” “spac* mass* presentation,” “spac* mass* retention,” “mass* distrib* retention,” “spac* remem*,” “distrib* remem*,” “lag effect,” “distrib* lag,” “distrib* rehears*,” “meta-analysis spacing,” and “review spacing.” Portions of article titles were entered as keywords into searches in these databases, and the resulting article lists were examined for potential articles. Primary authors were entered into PsycINFO searches, and their other articles were examined for relevance. Reference lists of all potential articles were examined for references to other potential studies. Reference lists from previous quantitative reviews (Donovan & Radosевич, 1999; Janiszewski et al., 2003; Moss, 1996) were examined. Internet searches were carried out (through http://www.google.com/) with the keywords “spacing effect” and “distributed practice.” Current and older unpublished data were requested from researchers who (in our opinion) might be conducting distributed practice research or who might have older unpublished data.

Inclusion Criteria

Studies had to meet several criteria to be included. The material must have been learned during a verbal memory task (most commonly, paired-associates/cued recall, list recall, fact recall, or paragraph recall; also, text recall, object recall, sentence recall, spelling, face naming, picture naming, and category recall). A recall test must have assessed performance at the time of final test. The experiment must have provided two or more learning
opportunities for each item (or one learning opportunity of the same temporal length and separated by a lag less than 1 s, for massed items). Experiments using children and older adults were included (with some caveats noted below). Studies using clinical populations were excluded. Out of 427 reviewed articles, a total of 317 experiments in 184 articles met these criteria, providing 958 accuracy values, 839 assessments of distributed practice, and 169 effect sizes.

Data Coding

Time intervals were coded in days (e.g., 1 min = 0.0000694 days, and 1 week = 7 days), ISI and retention interval were computed on the basis of authors’ reports of either the number of items and/or the amount of time between learning episodes for a given item. When authors described lags in terms of the actual (or in some cases, typical) number of items intervening between learning episodes involving a given item, an estimate of the time interval was derived. If this estimate could not be derived, usually either because presentation time for items was not given or because there was too much variability in the number of items between learning episodes, the data were excluded. When an experimental procedure employed a list presentation, retention interval varied with serial position; thus, retention interval might be 10 s for one item and 1 min for another item. Because of this confound, we have reanalyzed the data, separating out list recall and paired associates studies (see the Appendix). For most analyses, data were separated into relatively small ranges of retention interval (e.g., less than 1 min, 1 min–less than 10 min, 10 min–less than 1 day, 1 day, 2–7 days, 8–30 days, 31 or more days. In some cases, the necessary temporal and/or accuracy data were not available in the published article, but we were able to obtain these data directly from the study author. For these studies, the reader will not be able to calculate ISI, retention interval, and/or accuracy from the published article.)

Computation of Effect Size

Cohen’s d (Cohen, 1988) was selected as the measure of effect size, because of its widespread use in the literature. To calculate d, the difference in means was divided by the standard deviation. Choice of standard deviation is crucial, as it impacts observed effect size (Glass, McGaw, & Smith, 1981; Taylor & White, 1992). Statisticians differ on the optimal type of standard deviation to use in computing effect size. Either control population standard deviation (Morris, 2000; Taylor & White, 1992) or various other forms of standard deviation (cf. D’Amico, Neilands, & Zambarano, 2001; Gleser & Olkin, 1994; Johnson & Eagly, 2000; Shadish & Haddock, 1994) are typically used. In this article, standard deviation was determined by use of the method advocated by D’Amico et al. (2001), whereby standard deviation at each ISI was calculated, and a simple average was taken across conditions in that experiment. Studies that failed to report enough information to calculate this form of standard deviation were excluded from effect size analyses.

In choosing to use this form of standard deviation, we implicitly assumed that experimental conditions had equal variance (Becker, 1988; Cohen, 1988). In reality, variance between conditions is rarely numerically equal. We feel that the present data adequately approximated this assumption, because rarely did variances at different ISIs differ by more than 10%. As well, most of the data examined here exhibit neither ceiling nor floor effects, a likely source of unequal variance.

For within-subject experiments, standard deviation was corrected for dependence between responses with the equation $SD_{A} = SD_{A-	ext{independent}} \sqrt{[2(1-p)]^{1/2}}$ from Morris and DeShon (2002; cf. Cortina & Nouri, 2000; Dunlap, Cortina, Vaslow, & Burke, 1996; Gibbons, Hedeker, & Davis, 1993), where SD_{A} is the independent groups standard deviation, $SD_{A-	ext{independent}}$ is the within-subject standard deviation, and p is the correlation between scores. In the current analysis, correction for dependence used the average of all pairwise ISI correlations as input to the correction equation. When information necessary for this correction was unavailable, these data were excluded from effect size analyses.

Computation of ISI and Retention Interval Joint Effects

To examine the joint effects of ISI and retention interval, we performed three separate lag analyses. The first lag analysis was designed to mirror the lag analysis performed by Donovan and Radosevich (1999) and Janiszewski et al. (2003). This analysis does not allow claims about relative benefits of specific ISIs, for reasons that are described below. The second lag analysis does allow us to make claims about what specific ISI is optimal at each specific retention interval. The third (qualitative) lag analysis was designed to dispel concerns about a potential confound present in the first two lag analyses. In reading the following descriptions of absolute and difference lag analyses, the reader is referred to Figure 1.

Difference lag analyses. The first lag analysis was concerned with the differences in ISI and accuracy that are obtained when adjacent pairwise within-study experimental conditions are compared. For example, Figure 1 shows data from two hypothetical studies. Each study used ISIs of 1 min, 1 day, and 2 days. One study used a retention interval of 1 min, and the other study used a retention interval of 7 days. In performing difference lag analyses, we computed between-condition accuracy differences by subtracting the accuracy for the next shorter ISI from the accuracy value for the longer ISI. For each adjacent ISI pair from each study, accuracy difference = longer ISI accuracy − next short ISI accuracy. Likewise, the ISI difference was computed in the same way: For each adjacent ISI pair from each study, ISI difference = longer ISI − next shorter ISI.

Following the example in Figure 1, the ISIs used in Study 1 were 1 min, 1 day, and 2 days, resulting in two ISI differences. For ISIs of 2 days and 1 day, ISI difference = 2 days − 1 day = 1 day, and for ISIs of 1 day and 1 min, ISI difference = 1 day − 1 min = 1 day. Study 1 also yields two accuracy difference values. For ISIs of 2 days and 1 day, accuracy difference = 50 = 60 = 10%, and for ISIs of 1 day and 1 min, accuracy difference = 60 − 90 = −30%.

As seen in Figure 1, the average accuracy difference value for a retention interval of 1 min–2 hr and an ISI of 1 day is the mean of these two Study 1 accuracy difference values: −20%. The ISI difference and accuracy difference values were calculated from all studies in the literature for which both difference values were calculable. When plotting each data point, we binned that data point with other data points using similar or identical ISI and retention interval values. For example, data points using an ISI of 2 days were averaged with data points using an ISI of 7 days (when their retention intervals were from the same bin as well).

We computed effect sizes by dividing each accuracy difference value by the appropriate standard deviation. After this uncorrected effect size was obtained, the corrections described in the Computation of Effect Size section were performed, when necessary. In many cases, standard deviation values were not available, and thus there are substantially fewer effect size data points than there are accuracy difference data points. (By grouping data into ISI bins in this manner, we lost the ability to draw conclusions about the relative benefits of specific ISIs. Instead, we were only able to make claims about the expected accuracy differences that would result if similar experimental manipulations of ISI had been used.)

Absolute lag analyses. Because we are interested in the relative benefits of specific ISIs, we also performed lag analyses on the basis of absolute accuracy at specific ISIs and retention intervals. To compute absolute lag effects, we first binned data into varying ranges of ISI and retention interval. We then averaged the accuracy values from every data point within each ISI and retention interval bin. Referring again to the hypothetical data in Figure 1, Study 1 used ISIs of 1 min, 1 day, and 2 days. One accuracy value (the accuracy at ISI = 1 day; 60% correct) would be placed into the ISI = 1 day, retention interval = 1 min–2 hr bin; another accuracy value (the accuracy at ISI = 2 days) would be placed into the ISI = 2–28 days, retention interval = 1 min–2 hr bin. Each study in Figure 1 yields three accuracy values that are grouped into ISI and retention interval bins. (Note that each study in Figure 1 yielded one accuracy difference value for the difference lag analyses.)
To determine the relative benefits of specific ISIs, we were interested in the changes in average accuracy across different ISI bins, for a given retention interval bin. However, different studies contribute data to each ISI bin, even within a given retention interval bin. Thus, our comparisons of interest, for both difference and absolute lag analyses, involved between-study comparisons. This was problematic, as overall level of difficulty often differed substantially between studies. Because we did not correct for these differences, the overall level of difficulty may not be equivalent for every bin. Thus, both absolute and difference analyses were confounded. This confound was present in prior meta-analyses as well. Because of our concerns about this confound, we performed an additional analysis, which uses within-study instead of between-studies methods to determine how optimal ISI changes with retention interval. This third analysis method does not include the just-described confound.

Within-study lag analyses. As a third method for determining if and how optimal ISI changes as a function of retention interval, we qualitatively examined studies that included an optimal ISI. Studies with an optimal ISI are those that included at least three different ISI conditions, wherein one ISI condition had an accuracy value higher than the immediately shorter ISI and which was immediately followed by a longer ISI condition with an equal or lower accuracy value. Thus, the optimal ISI can be described as the shortest ISI that produced maximal retention. We examined whether these optimal ISIs were longer for longer retention intervals. (This analysis is subject to some caveats: First, it may be that the highest accuracy in a study is a local maximum and that another ISI would have produced higher accuracy had more ISIs been used in the study. The smaller the range of absolute ISIs used, the greater is this potential problem. Second, the actual observed optimal ISI varies, as not all ISIs were tested within a given study. The degree to which the observed optimal ISI might vary from the truly optimal ISI depends on the distance between the immediately adjacent ISI values. Even with these caveats, we believe that this analysis provides a good estimate of optimal ISI.)

Results and Discussion

Analyses examined the joint effects of ISI and retention interval on final-test retention, as well as the effects of massed versus spaced learning. We examined joint effects of ISI and retention interval separately for paired associate and list recall tasks, and we examined qualitative differences between studies—specifically, the influence of experimental design, relearning method, and expanding study intervals.

Spacing Effects: Massing Versus Spacing

The spacing effect hinges upon a comparison of massed and spaced presentations of a to-be-learned item. (As noted above, if a list of items was presented twice in immediate succession, this was considered a spaced presentation, because the learning of any given item took place on two different occasions in time. To qualify as a massed presentation, there must have been either a single uninterrupted presentation of the item during learning or a lag shorter than 1 s.) Our analysis of massed versus spaced learning compared massed learning with the shortest spaced learning interval provided within a given study. Studies that failed to include a massed presentation were excluded, leaving 271 comparisons of retention accuracy and 23 effect sizes. Only accuracy differences are reported, because of insufficient effect size data. Independent samples t tests were used for analyses, as a conservative measure, as some studies were between subjects and others were within subject.

Spaced presentations led to markedly better final-test performance, compared with massed presentations. For retention intervals less than 1 min, spaced presentations improved final-test performance by 9%, compared with massed presentations (see Table 1). This finding appears to run counter to what has sometimes been referred to as the “Peterson paradox,” wherein there is purportedly a massing benefit at short retention intervals. Perhaps
this massing benefit occurs only with extremely short retention intervals. For example, Peterson, Hillner, and Saltzman (1962) found a massing benefit only when retention interval was 2 or 4 s and not when retention interval was 8 or 16 s. Similarly, Peterson, Saltzman, Hillner, and Land (1962) found a massing benefit at retention intervals of 4 and 8 s, but Peterson, Wampler, Kirkpatrick, and Saltzman (1963) failed to find a massing benefit at retention intervals of 8, 16, or 60 s. All these studies used very short ISIs, from 4 to 8 s. (The two tasks most predominantly used by researchers—paired associate and list learning—were well represented across retention intervals.) Only 12 of 271 comparisons of massed and spaced performance showed no effect or a negative effect from spacing, making the spacing effect quite robust. Most of these 12 comparisons used the same task type as studies that did show a spacing benefit—paired associate learning.

We examined the interaction between magnitude of the spacing effect and retention interval by calculating the difference in performance between massed and spaced presentations and collapsing over each of seven retention interval ranges (see Table 1); there is no hint that massed presentation was preferable to spaced, whether retention interval was very short (less than 1 min) or very long (over 30 days). This suggests that there is always a large benefit when information is studied on two separate occasions instead of one. (Note that in every case examined here, the amounts of data usage while still attempting to capture log order of magnitude data altogether. To best utilize the full range of data, we created combination space contain sparse amounts of data, or are missing data points. In addition to the irregular sampling of ISI difference and retention interval combinations, large subsets of this combination space contain sparse amounts of data, or are missing data altogether. To best utilize the full range of data, we created our own ISI and retention interval bins in a way that maximized data usage while still attempting to capture log order of magnitude changes.

Lag Effects: Joint Effects of ISI and Retention Interval

Lag effects refer to changes in final-test memory performance as a function of change in ISI, when both ISIs and the differences between ISIs are greater than 0 s (in the current data set, at least 1 s). Prior reviews (Donovan & Radosevich, 1999; Janiszewski et al., 2003) found different relationships between ISI and effect size; Donovan and Radosevich (1999) reported nonmonotonic effects of ISI difference on effect size, whereas Janiszewski et al. (2003) found an increase in effect size as ISI difference increased. We have extended these previous reviews by including both ISI difference and retention interval in our analysis. It is possible that Donovan and Radosevich and Janiszewski et al. found these different patterns because the optimal ISI difference changes as a function of retention interval, and their reviews happened to include studies using different retention intervals. It is also possible that prior meta-analyses’ use of ISI differences rather than absolute ISIs influenced their findings, as information is lost during difference computation. (Unfortunately, we do not have access to the actual data used in each review and thus cannot test these predictions directly.)

To examine how absolute ISI and ISI difference interacts with retention interval, we grouped the accuracy data into bins with boundaries varying roughly by one log order of magnitude (limited by the amount of data available). We would have preferred to use more precise log orders of magnitude to create our bins, but combinations of ISI difference and retention interval are not evenly represented by the existing literature. Figure 2 plots each ISI difference and retention interval combination from every study included in our difference lag analyses. If this combination space were evenly represented, Figure 2 would show a uniform “cloud” of data points. In addition to the irregular sampling of ISI difference and retention interval combinations, large subsets of this combination space contain sparse amounts of data, or are missing data altogether. To best utilize the full range of data, we created our own ISI and retention interval bins in a way that maximized data usage while still attempting to capture log order of magnitude changes.

Accuracy difference and effect size lag analyses.

The vast majority of mean performance differences (80%) used a retention interval of less than 1 day, and only a few differences (4%) used a retention interval longer than 1 month (see Table 2). As mentioned earlier, Figure 2 shows this failure of the literature to fully represent the space of ISI and retention interval combinations. This feature of the literature impacts our ability to analyze the qualitative findings from our difference lag analyses with inferential statistics. (A recent case study critiquing meta-analysis technique suggests that statistical testing is not necessary to produce valid, interpretable findings; Briggs, 2005).

For each study, we computed the accuracy difference that resulted from each pairwise ISI difference, and we plotted the average of these accuracy differences as a function of ISI difference and retention interval (see Figure 3). Only ISI difference by retention interval bins that include three or more mean performance differences are shown. Several bins have fewer than three mean accuracy differences, and accuracy difference values from bins with at least one data point are qualitatively consistent with the pattern of results shown in Figure 3. There is little, if any, ISI...
difference effect at retention intervals shorter than 1 day. In sharp contrast, for a 1-day retention interval, performance significantly increased as ISI difference increased from 1–15 min to 1 day. Qualitatively, one study suggested that performance should drop when ISI difference increases beyond 1 day. The same pattern of results is seen with a 2- to 28-day retention interval: A 1-day ISI difference produced a significant benefit over the 1- to 15-day ISI, and there was a marginally significant drop in performance as ISI difference increased beyond 1 day. For retention intervals longer than 1 month, we must rely on qualitative results, which suggest that the optimal ISI difference is longer than 1 day at retention intervals longer than 1 month. Overall, the results show a tendency for the greatest increases in final-test recall to be found at longer ISI differences, the longer the retention interval. The qualitative pattern that optimal ISI difference increases as retention interval increases is supported by quantitative analyses of the bin data (see Table 3). Furthermore, effect size data mirror these findings from the accuracy data (see Figure 4).

Portions of our data are qualitatively similar to other meta-analysis findings. Like Donovan and Radosevich’s (1999) data, our data show nonmonotonic effects of ISI difference. Like Janiszewski et al.’s (2003) results, our data show generally improved retention as ISI difference increases. Unfortunately, it is impossible to know whether we have confirmed these meta-analyses, because we do not know the retention interval values used in each prior meta-analysis; however, our results provide a plausible mechanism by which these prior discrepant findings might be reconciled.

For accuracy data, which are depicted in Figure 3, Table 4 shows the number of data points that use paired associate, list recall, or other types of tasks, and the overall number of data points, studies, and unique participants included in each bin. If the relative percentage of data points using each type of task changes between bins, then changes in optimal ISI difference with change in retention interval could potentially be due to changes in the percentage of data points using each task type as opposed to changes in retention interval. In the Appendix, Figures A1 and A2 (for paired associate and list recall tasks, respectively) illustrate that the joint effects of ISI difference and retention interval are due to changes in retention interval and not to changes in task type.

Table 2

<table>
<thead>
<tr>
<th>Retention interval range</th>
<th>No. of performance differences</th>
<th>No. of data points</th>
<th>No. of effect sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–59 s</td>
<td>174</td>
<td>301</td>
<td>14</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>259</td>
<td>452</td>
<td>53</td>
</tr>
<tr>
<td>1 day</td>
<td>27</td>
<td>52</td>
<td>16</td>
</tr>
<tr>
<td>2–28 days</td>
<td>56</td>
<td>108</td>
<td>31</td>
</tr>
<tr>
<td>30 days or more</td>
<td>23</td>
<td>34</td>
<td>19</td>
</tr>
</tbody>
</table>

Figure 2. Scatter plot of interstudy interval (ISI) difference by retention interval, for all studies in the accuracy difference lag analyses.
and retention interval, we are really interested in how absolute ISI interacts with retention interval. On the basis of the absolute optimal ISI data, we can make concrete recommendations on how large of a lag is optimal, given a particular retention interval. Differences in performance between optimal and suboptimal ISI differences should be smaller and less meaningful as a measure of ideal absolute ISI, compared with differences between optimal and suboptimal absolute ISIs. This is the case because ISI differences of 7–8 days and ISI differences of 0–1 day are combined in difference ISI analyses but not in absolute lag analyses, and we would expect an ISI change from 0 to 1 day to show a much larger effect than an ISI change from 7 to 8 days.

Mirroring accuracy difference data, most data points used a retention interval less than 1 day, and only a few data points used a retention interval longer than 1 month (see Table 2). Just as the literature failed to represent the full combination space of ISI differences and retention intervals for the difference lag analyses, so too was the space of ISI and retention interval differences.

Table 3
Shorter and Longer Interstudy Interval (ISI) Range, Retention Interval Range, Percentage Correct at the Shorter and Longer ISI Range, and Statistical Analyses, for Accuracy Difference Lag Analyses

<table>
<thead>
<tr>
<th>Shorter ISI range</th>
<th>Longer ISI range</th>
<th>Retention interval range</th>
<th>% correct at ISI range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–10 s</td>
<td>11–29 s</td>
<td>4–59 s</td>
<td>1.6 3.9 0.9</td>
</tr>
<tr>
<td>11–29 s</td>
<td>1–15 min</td>
<td>4–59 s</td>
<td>3.9 −0.9 1.2</td>
</tr>
<tr>
<td>30–59 s</td>
<td>1 day</td>
<td>1 min–2 hr</td>
<td>3.4 1.0 2.5</td>
</tr>
<tr>
<td>1–15 min</td>
<td>1 day</td>
<td>1 day</td>
<td>6.4 17.5 2.9</td>
</tr>
<tr>
<td>1–15 min</td>
<td>1 day</td>
<td>2–28 days</td>
<td>1.5 10.3 2.5</td>
</tr>
<tr>
<td>1 day</td>
<td>2–28 days</td>
<td>2–28 days</td>
<td>10.3 3.5 2.8</td>
</tr>
<tr>
<td>1 day</td>
<td>2–28 days</td>
<td>30–2,900 days</td>
<td>6.5 9.0 2.7</td>
</tr>
<tr>
<td>2–28 days</td>
<td>29–84 days</td>
<td>30–2,900 days</td>
<td>9.0 −0.6 2.6</td>
</tr>
</tbody>
</table>
combinations inadequately sampled for the absolute lag analyses (see Figure 5).

The plot of absolute ISI bin by retention interval bin is similar to the plot of ISI difference bin by retention interval bin (compare Figures 6 and 3). Although there are small differences in the ISI bin showing optimal performance, in both cases, the trend is for the optimal ISI bin to increase as retention interval increases. Quantitative analyses are shown in Table 5, and the number of data points that used each task type is shown in Table 6. In the Appendix, data are separated by task type, either paired associate or list recall. As in the ISI difference lag analysis, only absolute ISI by retention interval bins that include three or more data points are shown.

Within-study lag analyses. One problem with our absolute and difference lag analyses is that different studies contribute differentially to each bin. That is, each bin does not represent the same combination of studies. For this reason, one must be wary that task difficulty or other study-related factors played a role in differences between bins. A better comparison of lag effects would come from within-study comparisons, across a wide range of ISIs and retention intervals, as this eliminates the problem with task difficulty. To date, this massive study, which would need to include dozens of ISI and retention interval combinations, has not been conducted. Nonetheless, individual studies that represent a wide range of ISIs, both sub- and supraday, at a single retention interval, are supportive of our findings: Cepeda et al. (2005) presented data in which the optimal ISI was longer than 1 day at a supramonth retention interval; Gordon (1925) showed that subday ISIs are optimal at subday retention intervals and that supraday ISIs are optimal at supraday retention intervals; Glenberg and Lehmann (1980) showed results that mirror those of Gordon. These three studies are consistent with a number of other studies (e.g., Balota, Duchek, & Paullin, 1989; Glenberg, 1976; Peterson, Wampler, Kirkpatrick, & Saltzman, 1963) that show within-study support for the hypothesis that optimal ISI increases as retention interval increases. Table 7 shows results for individual studies that examined ISIs and retention intervals of 1 day or more.

Lag analysis summary. In summary, synthetic analyses support the robustness and generality of ISI and retention interval joint effects that a few oft-cited individual experiments have sometimes observed. Whereas earlier quantitative syntheses had sought to uncover effects of ISI difference or retention interval per se, the present review suggests that the literature as a whole reflects nonmonotonic effect of absolute ISI upon memory performance at a given retention interval, as well as the positive relationship between retention interval and the optimal absolute ISI value for that retention interval.

Experimental Design Issues

As noted in the introductory section, in examining commonly used experimental designs, we found that a number of frequently
cited studies contained serious design confounds or failed to implement the claimed experimental manipulation. Given their obvious practical importance, we specifically examined studies that used ISIs and retention intervals of 1 or more days (i.e., the studies in Table 7), to assess the quality of each study.

Studies contained several different confounds. One group of studies provided learning to perfect performance and then relearning, with feedback, to the criteria of perfect performance (Bahrick, 1979; Bahrick et al., 1993; Bahrick & Phelps, 1987). These studies confounded number of relearning trials with ISI; that is, there was more relearning at longer ISIs. Some studies administered recognition tests without feedback during learning sessions (in some cases combined with recall tests; Burtt & Dobell, 1925; Spitzer, 1939; Welborn, 1933). Because these studies did not provide feedback, it is likely that no relearning occurred on the second and subsequent sessions for any item that elicited an error (see Pashler, Cepeda, WiXted, & Rohrer, 2005). Some studies (Simon, 1979; E. C. Strong, 1973; E. K. Strong, 1916) provided unlimited restudy time, without feedback. Even though the amount of relearning that took place during the second session was not assessed, relearning was not confounded in these studies.

To provide some indication of the importance of these methodological issues, we examined the effect of ISI at similar retention intervals, comparing the studies we judged to be confounded with those we judged to be nonconfounded. There are seven experiments in five articles that used nonconfounded designs with ISIs and retention intervals of 1 day or more (Ausubel, 1966; Cepeda et al. 2005; Childers & Tomasello, 2002; Edwards, 1917; Glenberg & Lehmann, 1980) restudy time, without feedback. Even though the amount of relearning that took place during the second session was not assessed, relearning was not confounded in these studies.

In contrast to these confounded studies, other studies appear free of major confounds. Several experiments provided either learning to perfect performance on the first session or a fixed number of first-session learning trials, followed by a small, fixed number of study trials (with feedback) during the second session (Cepeda et al., 2005). These experiments equated, across conditions, the degree of initial learning (learning during the first session) and avoided any confound between subsequent learning (learning during the second session) and ISI. A number of studies had fixed (Ausubel, 1966; Childers & Tomasello, 2002; Edwards, 1917; Glenberg & Lehmann, 1980) restudy time, without feedback. Even though the amount of relearning that took place during the second session was not assessed, relearning was not confounded in these studies.

Table 4

<table>
<thead>
<tr>
<th>No. of performance differences</th>
<th>No. of studies</th>
<th>No. of unique participants</th>
<th>No. using Paired associate tasks</th>
<th>List recall tasks</th>
<th>Other tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention interval range</td>
<td>ISI range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–59 s</td>
<td>1–10 s</td>
<td>79</td>
<td>28</td>
<td>1,539</td>
<td>35</td>
</tr>
<tr>
<td>4–59 s</td>
<td>11–29 s</td>
<td>70</td>
<td>39</td>
<td>2,083</td>
<td>20</td>
</tr>
<tr>
<td>4–59 s</td>
<td>30–59 s</td>
<td>18</td>
<td>12</td>
<td>694</td>
<td>6</td>
</tr>
<tr>
<td>4–59 s</td>
<td>1–15 min</td>
<td>7</td>
<td>4</td>
<td>327</td>
<td>5</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>1–10 s</td>
<td>43</td>
<td>25</td>
<td>1,384</td>
<td>10</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>11–29 s</td>
<td>91</td>
<td>50</td>
<td>2,736</td>
<td>27</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>30–59 s</td>
<td>50</td>
<td>41</td>
<td>2,478</td>
<td>13</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>1–15 min</td>
<td>52</td>
<td>40</td>
<td>3,295</td>
<td>18</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>1 day</td>
<td>10</td>
<td>7</td>
<td>180</td>
<td>2</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>2–28 days</td>
<td>13</td>
<td>9</td>
<td>618</td>
<td>3</td>
</tr>
<tr>
<td>1 day</td>
<td>30–59 s</td>
<td>9</td>
<td>8</td>
<td>469</td>
<td>4</td>
</tr>
<tr>
<td>1 day</td>
<td>1–15 min</td>
<td>14</td>
<td>9</td>
<td>667</td>
<td>6</td>
</tr>
<tr>
<td>1 day</td>
<td>1 day</td>
<td>4</td>
<td>4</td>
<td>86</td>
<td>0</td>
</tr>
<tr>
<td>2–28 days</td>
<td>30–59 s</td>
<td>3</td>
<td>3</td>
<td>174</td>
<td>1</td>
</tr>
<tr>
<td>2–28 days</td>
<td>1–15 min</td>
<td>14</td>
<td>6</td>
<td>613</td>
<td>6</td>
</tr>
<tr>
<td>2–28 days</td>
<td>1 day</td>
<td>14</td>
<td>11</td>
<td>902</td>
<td>5</td>
</tr>
<tr>
<td>2–28 days</td>
<td>2–28 days</td>
<td>25</td>
<td>18</td>
<td>4,118</td>
<td>7</td>
</tr>
<tr>
<td>30–2,900 days</td>
<td>1 day</td>
<td>4</td>
<td>3</td>
<td>106</td>
<td>4</td>
</tr>
<tr>
<td>30–2,900 days</td>
<td>2–28 days</td>
<td>13</td>
<td>3</td>
<td>294</td>
<td>12</td>
</tr>
<tr>
<td>30–2,900 days</td>
<td>29–84 days</td>
<td>6</td>
<td>3</td>
<td>160</td>
<td>6</td>
</tr>
</tbody>
</table>
days and who found that the ideal ISI was closer to 1–3 days than 7–10 days. Welborn (1933), who failed to provide relearning during relearning sessions for items that elicited errors, found effects similar to Cepeda et al.: In both studies, retention decreased as ISI increased beyond 1 day. However, Welborn used a retention interval of 28 days, whereas Cepeda et al. used a retention interval of 10 days. Two studies that used unlimited restudy time (Simon, 1979; E. C. Strong, 1973) are in line with similar unconfounded studies (i.e., Ausubel, 1966; Cepeda et al., 2005, Experiment 1; Glenberg & Lehmann, 1980), but one study that used unlimited restudy time (E. K. Strong, 1916) is not. Even with some inconsistencies between confounded and unconfounded experimental designs, we believe that our analyses of ISI and retention interval joint effects are not undermined by experimental design problems plaguing some of the experiments included in our analyses. Indeed, regardless of whether the confounded studies are excluded, the same basic conclusion would be drawn: Optimal ISI increases as retention interval increases.

Expanding Versus Fixed ISIs

It often has been suggested that when items are to be relearned on two or more occasions, memory can be maximized by relearning information at increasingly spaced (expanding) ISIs, as opposed to relearning at a fixed ISI (Bahrick & Phelps, 1987; Hollingworth, 1913; Kitson, 1921; Landauer & Bjork, 1978; Modigliani, 1967; Pyle, 1913). One intuitive version of this formulation says memory is best promoted when a learner undergoes tests that are as difficult as possible, while maintaining errorless performance. Only a few studies have empirically examined this issue, however, resulting in 22 comparisons of retention accuracy and 8 effect size comparisons. Independent samples t tests were used for analyses, as a conservative measure, as some studies were between subjects (n = 7) and others were within subject (n = 11).

Overall, expanding ISIs led to better performance than fixed intervals (see Table 8). Fifteen out of 18 studies used a paired associate learning task, and we did not detect any systematic differences related to type of task. Unfortunately, large standard errors, indicative of large between-study variability, make conclusions drawn from expanding versus fixed interval data necessarily tentative. Large between-study differences can be seen more dramatically by examining the empirical data from three different researchers, shown in Table 9. All three researchers used ISIs and retention intervals of at least 1 day. One researcher (Tsai, 1927) found better performance with expanding study intervals, one (Cull, 2000) found better performance with fixed study intervals, and one (Clark, 1928) found no difference between fixed and expanding intervals. In all three sets of studies, the average between-presentation ISI was the same for expanding and fixed ISIs, and retention intervals overlapped across studies; use of different ISIs and retention intervals does not explain differences between each set of studies. Any number of differences may explain these conflicting findings. One variable that might explain between-study differences is the presence of feedback. Expanding intervals might benefit performance when feedback is withheld, because expanding intervals minimize the chance of forgetting an item. (In the absence of feedback, forgetting an item usually causes

![Figure 5. Scatter plot of interstudy interval by retention interval, for all studies in the absolute lag analyses.](image-url)
the item to be unrecoverable; see Pashler et al., 2005) This feedback hypothesis is supported by a single study (Cull, Shaughnessy, & Zechmeister, 1996). Unfortunately, the feedback hypothesis cannot be tested adequately with current data, because all three of the studies using ISIs and retention intervals longer than 1 day either provided testing with feedback (Cull, 2000) or provided a fixed amount of item restudy time (Clark, 1928; Cull, 2000; Tsai, 1927), which was functionally equivalent to providing feedback (because the entire to-be-learned item was present). With the exception of Cull et al. (1996) and Landauer and Bjork (1978), expanding interval studies that used retention intervals of less than 1 day (Cull, 1995; Foos & Smith, 1974; Hser & Wickens, 1989; Siegel & Misselt, 1984) all provided either a fixed amount of restudy time for each entire item or testing with feedback. We are left with inadequate evidence to support or refute the feedback hypothesis.

General Discussion

Although the distributed practice effect has spawned a large literature, prior meta-analyses (Donovan & Radosevich, 1999; Janiszewski et al., 2003; T. D. Lee & Genovese, 1988) failed to distinguish spacing effects (a single presentation, or a lag less than 1 s, vs. multiple presentations, or a lag of 1 s or more, of a given item; equal total study time for that item, whether in the spaced or massed condition) from lag effects (less vs. more time between study opportunities for a given item, when study opportunities for both the shorter and longer lag conditions are separated by 1 s or more). In the present review, this spacing versus lag distinction proved helpful in quantifying the relationship between level of retention, ISI, and retention interval. When participants learned individual items at two different points in time (spaced; lag of 1 s or more), equating total study time for each item, they recalled a greater percentage of items than when the same study time was nearly uninterrupted (massed; lag of less than 1 s). This improvement occurred regardless of whether the retention interval was less than 1 min or more than 1 month. In short, for the spacing effect proper, we failed to find any evidence that the effect is modulated by retention interval. At first blush, this conclusion might seem to suggest that students are wrong to believe that cramming immediately before an exam is an effective strategy to enhance performance on the exam. However, a few hours of cramming would typically involve repeated noncontiguous study of individual bits of information, rather than literal massing as examined in the studies noted. Furthermore, most advocates of cramming probably have in mind the comparison between studying immediately prior to the exam and studying days or weeks prior to the exam.

A different pattern of results was observed for increases in ISI beyond the massed condition (i.e., from a nonzero value to an even larger nonzero value). When ISI was increased, participants retained more information. However, for long ISIs, in proportion to

Figure 6. For all studies in the absolute lag analyses, accuracy, binned by interstudy interval (ISI) and retention interval and averaged across studies. When surrounded by ISI bins with lower accuracy values, the ISI bin showing the highest accuracy value at each retention interval bin is indicated with an asterisk. Error bars represent one standard error of the mean.

![Graph showing average accuracy by ISI and retention interval](image-url)
retention interval, further increases in ISI reduced accuracy. Thus, for a given retention interval, there was a nonzero value of ISI that optimized accuracy. (This is known as a nonmonotonic lag effect.) Moreover, the optimal ISI increased as retention interval increased. For instance, at retention intervals of less than 1 min, ISIs of less than 1 min maximized retention; at retention intervals of 6 months or more, ISIs of at least 1 month maximized retention. These results clearly show that a single ISI does not produce optimal retention across a wide range of retention intervals. The nonmonotonic effect of ISI upon retention and the dependency of optimal ISI upon retention interval both appear to characterize the literature as a whole, as well as a few well-known specific studies (e.g., Glenberg & Lehmann, 1980).

Some researchers have suggested, with little apparent empirical backing, that expanding ISIs improve long-term learning (Hollingworth, 1913; Kitson, 1921; Landauer & Bjork, 1978; Pyle, 1913); in contrast, some empirical studies (Cull, 1995, 2000; Foos & Smith, 1974) have found that expanding intervals are less effective than fixed spacing intervals. Our review of the evidence suggests that, in general, expanding intervals either benefit learning or produce effects similar to studying with fixed spacing. The literature offers examples of impaired performance with expanding intervals (Cull, 2000; Foos & Smith, 1974) and examples of expanding interval benefits (Cull et al., 1996; Hser & Wickens, 1989; Landauer & Bjork, 1978; Tsai, 1927). We found no obvious systematic differences between studies that do and do not show

Table 5
Shorter and Longer Interstudy Interval (ISI) Range, Retention Interval Range, Percentage Correct at the Shorter and Longer ISI Range, and Statistical Analyses, for Absolute Lag Analyses

<table>
<thead>
<tr>
<th>Shorter ISI range</th>
<th>Longer ISI range</th>
<th>Retention interval range</th>
<th>% correct at ISI range</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–10 s</td>
<td>30–59 s</td>
<td>2–59 s</td>
<td>49.4</td>
<td>t(162) = 1.4, p = .167</td>
</tr>
<tr>
<td>30–59 s</td>
<td>1 min–3 hr</td>
<td>2–59 s</td>
<td>54.1</td>
<td>t(90) = 1.3, p = .198</td>
</tr>
<tr>
<td>1–10 s</td>
<td>1 min–3 hr</td>
<td>1 min–2 hr</td>
<td>42.3</td>
<td>t(248) = 4.8, p < .001</td>
</tr>
<tr>
<td>1 min–3 hr</td>
<td>2–28 days</td>
<td>1 min–2 hr</td>
<td>54.0</td>
<td>t(161) = 3.4, p < .005</td>
</tr>
<tr>
<td>30–59 s</td>
<td>1 day</td>
<td>1 day</td>
<td>36.0</td>
<td>t(16) = 2.2, p < .05</td>
</tr>
<tr>
<td>11–29 s</td>
<td>2–28 days</td>
<td>1 day</td>
<td>26.4</td>
<td>t(21) = 2.5, p < .05</td>
</tr>
<tr>
<td>1 day</td>
<td>2–28 days</td>
<td>2–28 days</td>
<td>52.8</td>
<td>t(58) = 1.1, p = .270</td>
</tr>
<tr>
<td>1 min–3 hr</td>
<td>29–168 days</td>
<td>30–2,900 days</td>
<td>27.0</td>
<td>t(12) = 1.4, p = .180</td>
</tr>
</tbody>
</table>

Table 6
Number of Data Points and Studies, Unique Participants, and Data Points Using Paired Associate, List Recall, or Other Task Types, for Absolute Lag Analyses, by Retention Interval Range and Interstudy Interval (ISI) Range

<table>
<thead>
<tr>
<th>Retention interval range</th>
<th>ISI range</th>
<th>No. of data points</th>
<th>No. of studies</th>
<th>No. of unique participants</th>
<th>Paired associate tasks</th>
<th>List recall tasks</th>
<th>Other tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–59 s</td>
<td>1–10 s</td>
<td>113</td>
<td>62</td>
<td>3,248</td>
<td>41</td>
<td>66</td>
<td>6</td>
</tr>
<tr>
<td>2–59 s</td>
<td>11–29 s</td>
<td>96</td>
<td>57</td>
<td>2,694</td>
<td>29</td>
<td>59</td>
<td>8</td>
</tr>
<tr>
<td>2–59 s</td>
<td>30–59 s</td>
<td>51</td>
<td>35</td>
<td>1,707</td>
<td>21</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>2–59 s</td>
<td>1 min–3 hr</td>
<td>41</td>
<td>20</td>
<td>1,152</td>
<td>14</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>1–10 s</td>
<td>101</td>
<td>66</td>
<td>3,711</td>
<td>24</td>
<td>59</td>
<td>18</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>11–29 s</td>
<td>84</td>
<td>76</td>
<td>4,773</td>
<td>25</td>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>30–59 s</td>
<td>93</td>
<td>80</td>
<td>4,785</td>
<td>34</td>
<td>40</td>
<td>19</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>1 min–3 hr</td>
<td>149</td>
<td>83</td>
<td>4,867</td>
<td>45</td>
<td>64</td>
<td>40</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>1 day</td>
<td>11</td>
<td>8</td>
<td>222</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1 min–2 hr</td>
<td>2–28 days</td>
<td>14</td>
<td>9</td>
<td>390</td>
<td>3</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1 day</td>
<td>1–10 s</td>
<td>4</td>
<td>4</td>
<td>60</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1 day</td>
<td>30–59 s</td>
<td>12</td>
<td>11</td>
<td>552</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>1 day</td>
<td>1 min–3 hr</td>
<td>30</td>
<td>19</td>
<td>1,100</td>
<td>12</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>1 day</td>
<td>1 day</td>
<td>6</td>
<td>6</td>
<td>83</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2–28 days</td>
<td>11–29 s</td>
<td>5</td>
<td>5</td>
<td>190</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2–28 days</td>
<td>30–59 s</td>
<td>8</td>
<td>5</td>
<td>267</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2–28 days</td>
<td>1 min–3 hr</td>
<td>35</td>
<td>20</td>
<td>1,215</td>
<td>12</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>2–28 days</td>
<td>1 day</td>
<td>18</td>
<td>15</td>
<td>892</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>2–28 days</td>
<td>2–28 days</td>
<td>42</td>
<td>24</td>
<td>3,344</td>
<td>14</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>30–2,900 days</td>
<td>1 min–3 hr</td>
<td>4</td>
<td>3</td>
<td>53</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30–2,900 days</td>
<td>1 day</td>
<td>5</td>
<td>3</td>
<td>54</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>30–2,900 days</td>
<td>2–28 days</td>
<td>15</td>
<td>4</td>
<td>175</td>
<td>13</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>30–2,900 days</td>
<td>29–168 days</td>
<td>10</td>
<td>3</td>
<td>84</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Study</td>
<td>ISI (days)</td>
<td>Retention interval (days)</td>
<td>Final test performance (% correct)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausubel (1966)</td>
<td>1</td>
<td>6</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahrick (1979), Experiment 2</td>
<td>1</td>
<td>30</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahrick, Bahrick, Bahrick, & Bahrick (1993)</td>
<td>14</td>
<td>360</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>360</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>360</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>720</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>720</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>720</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1,080</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1,080</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>1,080</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1,800</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1,800</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>1,800</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahrick & Phelps (1987)</td>
<td>1</td>
<td>2,900</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2,900</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burtt & Dobell (1925), Experiment 2</td>
<td>3</td>
<td>10</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burtt & Dobell (1925), Experiment 3</td>
<td>3</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>17</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cepeda et al. (2005), Experiment 1</td>
<td>1</td>
<td>10</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>10</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cepeda et al. (2005), Experiment 2a</td>
<td>1</td>
<td>168</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>168</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>168</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>168</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>168</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cepeda et al. (2005), Experiment 2b</td>
<td>1</td>
<td>168</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>168</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>168</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>168</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>168</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childers & Tomasello (2002), Experiment 1</td>
<td>1</td>
<td>1</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edwards (1917)</td>
<td>1</td>
<td>3</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenberg & Lehmann (1980), Experiment 2</td>
<td>1</td>
<td>7</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simon (1979)</td>
<td>7</td>
<td>7</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>7</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>35</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>35</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spitzer (1939)</td>
<td>1</td>
<td>14</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>14</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. C. Strong (1973)</td>
<td>7</td>
<td>7</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. K. Strong (1916)</td>
<td>1</td>
<td>28</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>28</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welborn (1933)</td>
<td>1</td>
<td>28</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>28</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
expanding interval benefits, although one difference that might account for interstudy variability is the presence or absence of feedback. Given the practical import of multisession study (almost all learning takes place on more than two occasions), this topic clearly deserves further research.

Implications for Theories of Distributed Practice

Many theories purport to account for distributed practice effects, and little consensus has been achieved about the validity of these accounts. Although a thorough theoretical analysis of the distributed practice task is well beyond the scope of the present, relatively focused, review (for reviews of distributed practice, see Glenberg, 1979; Hintzman, 1974), it is of interest to examine how some of the principle conclusions reached in the present review might affect the credibility of some frequently discussed theories. We focus on four theories in detail, without in any way implying that other theories lack merit.

To date, theorists have failed to distinguish between spacing and lag effects. This makes it difficult to know how broadly theorists intended their theories to be applied. Theories often predict that spaced and massed items will be processed differently—for example, the inattention theory predicts that spaced items will receive greater attentional focus; the encoding variability theory predicts that spaced items will contain more interitem associations.

Table 9
Percentage Correct on Final Test, for Fixed and Expanding Study Intervals, for Studies with a Retention Interval of at Least 1 Day

<table>
<thead>
<tr>
<th>Study</th>
<th>ISI (days)</th>
<th>Retention interval (days)</th>
<th>Fixed study intervals (% correct)</th>
<th>Expanding study intervals (% correct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark (1928)</td>
<td>2</td>
<td>21</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Cull (2000), Exp. 3</td>
<td>2</td>
<td>3</td>
<td>98</td>
<td>84</td>
</tr>
<tr>
<td>Cull (2000), Exp. 4</td>
<td>2</td>
<td>8</td>
<td>89</td>
<td>82</td>
</tr>
<tr>
<td>Tsai (1927), Exp. 2</td>
<td>2</td>
<td>3</td>
<td>48</td>
<td>61</td>
</tr>
<tr>
<td>Tsai (1927), Exp. 2</td>
<td>2</td>
<td>7</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>Tsai (1927), Exp. 3</td>
<td>2</td>
<td>3</td>
<td>56</td>
<td>74</td>
</tr>
<tr>
<td>Tsai (1927), Exp. 3</td>
<td>2</td>
<td>17</td>
<td>40</td>
<td>54</td>
</tr>
</tbody>
</table>

Note. ISI = interstudy interval; Exp. = Experiment.

(Massed items have associations only to the two immediately adjacent items, whereas spaced items have associations to at least three and usually four adjacent items. Spaced items have more associations because each spaced item is sandwiched between two items in the first session and sandwiched between two different items in the second session.) Because these and other theories are able to make differential predictions for spaced versus massed presentations, as well as for changes in lag, our theoretical discussion applies to both spacing and lag effects. In other words, our theoretical discussion applies to distributed practice effects, where distributed practice includes both spacing and lag effects.

The first class of theoretical accounts that we discuss is deficient processing theory. Deficient processing theory is based on mechanisms that alter the amount of focus received by particular items. An example of deficient processing theory is the inattention theory (Hintzman, 1974). Inattention theory suggests that when the ISI is short, processing of the second presentation is reduced in quality and/or quantity: The learner pays less attention to something that is, by virtue of the short ISI, relatively more familiar. Deficient processing theory has struck many writers as offering an intuitively reasonable account of why massed presentations would produce inferior memory. The fact that massed presentations are normally inferior even when retention interval is very short, as noted above, certainly seems consistent with this account. This account also enjoys support from a study that suggests it is the trace of the second presentation, rather than the first, that is reduced when ISI is shorter than optimal (Hintzman, Block, & Summers, 1973).

Can deficient processing theory handle one of our meta-analysis’s primary findings, the joint effects of ISI and retention interval? Suppose Study 1 yields a single memory trace, which is then further strengthened as a consequence of Study 2, and further suppose this trace is characterized by two parameters: the strength of the trace and its rate of decay. These two parameters are found in a number of functions used to describe forgetting, including the commonly preferred power law function described by Wixted and Ebbesen (1997). If Study 2 strengthens the trace without affecting its decay parameter, then even if the degree of strengthening is assumed to vary in some arbitrary fashion with ISI, there will have to be a single value of ISI that yields the strongest trace. This ISI would produce optimal later recall, regardless of how long the final test is delayed. Thus, this version of the deficient processing theory...
is inconsistent with the effect of retention interval on optimal ISI, as seen in the present integrative review.

One could, of course, hypothesize that it is not just strength, but also decay rate, that is modified by Study 2 (making the account closer to suggestions by Pavlik & Anderson, 2003; Reed, 1977; and Wickelgren, 1972, discussed below), but this assumption is at odds with classic findings in the forgetting literature. That is, variations in the degree of attention paid to a study item appear to affect either the quantity or the quality of processing, but not both. Direct manipulations of the quantity of processing are known to have a large effect on the degree of learning (a proxy for strength) while having little or no effect on the rate of forgetting (Anderson, 2000; Underwood & Keppel, 1963; Wixted, 2004). Similarly, manipulating the quality of processing at encoding by manipulating depth of processing has a large effect on the degree of learning but a negligible effect on the rate of forgetting (McBride & Doshier, 1997). ISI, in contrast, has a large effect on the rate of forgetting. Specifically, as ISI increases, the rate of decay decreases, which is to say that longer ISIs produce more gradual forgetting curves. Nevertheless, it is conceivable that variations in attention affect the quality of processing in some other, as yet unspecified, way. If so, then the deficient processing theory may yet be able to accommodate our findings. In light of the available evidence, however, the effect of ISI on the rate of forgetting seems not to be an indirect result of the effect of that manipulation on attention.

Things become more complicated if one assumes that Study 1 and Study 2 produce two independent traces. One could, for example, suppose that the stronger is the trace resulting from Study 1 (call this Trace 1) at the time of Study 2, and the weaker is the trace formed from Study 2 (Trace 2). Once again, however, if it is assumed that Trace 1 strength affects the strength but not the decay rate of Trace 2, this independent-trace account also fails to explain the dependence of optimal ISI upon retention interval.

In summary, deficient processing theory appears to be threatened by complex joint effects of ISI and retention interval that were revealed in the literature, as documented in the present review. Although it would obviously be premature to say that all versions of the deficient processing account are falsified, the challenges appear substantial. (The deficient processing account confronts a separate difficulty in the finding that providing rewards not to be an indirect result of the effect of that manipulation on attention.

One experimental result that appears to undercut consolidation theory (Wickelgren, 1972). Upon the second presentation of a repeated item, consolidation theory proposes that a new (second) trace is formed that inherits the state of consolidation of the first occurrence of that item. If the ISI is 1 week, more consolidation into long-term memory will have occurred than if the ISI is 1 day, and the second trace will inherit this higher state of consolidation. If the delay is too long, say 1 year, there will be no initial memory trace whose consolidation state can be inherited, and thus retention of that item will be lowered. This theory, as well as related accounts proposed by Pavlik and Anderson (2003) and Reed (1977), quite directly predicts that, for a given retention interval, ISI varies nonmonotonically; it may or may not also predict that optimal ISI increases monotonically with retention interval.

One experimental result that appears to undercut consolidation theory is the finding of Hintzman et al. (1973), which suggests that learning produced by Study 2, rather than learning produced by Study 1, is decreased when the Study 2 presentation follows closely after the Study 1 presentation (see Murray, 1983, for arguments that this finding may not be definitive). If Study 1 processing were interrupted, as purported in consolidation theory, then Study 1 and not Study 2 learning should be decreased.

Study-phase retrieval theory (Braun & Rubin, 1998; Murray, 1983; Thiessen & D’Agostino, 1976) provides a fourth explanation of the distributed practice effect. In this theory, the second (restudy) presentation serves as a cue to recall the memory trace of the first
presentation. This is similar to consolidation theory, but unlike in consolidation theory, consolidation of the first-presentation memory trace is not interrupted. Study-phase retrieval is supported by empirical evidence: A lag effect is found when retrieval of the first presentation is required (Thios & D’Agostino, 1976); in contrast, no lag effect is found when retrieval is not required. Notably, interrupting or otherwise diminishing study-phase retrieval can eliminate the distributed practice effect (Thios & D’Agostino, 1976). The mechanism(s) by which retrieval of the first-presentation trace helps later retrieval has been left open to interpretation: Sources of benefit may include increased contextual associations or strengthened first-presentation traces. As in consolidation theory, if the first-presentation memory trace cannot be retrieved, then later retrieval will be less likely; thus, study-phase retrieval theory predicts nonmonotonic lag effects. It is unclear whether study-phase retrieval theory predicts that optimal ISI increases monotonically with retention interval.

In summary, the findings gleaned in the present quantitative synthesis appear to have a significant bearing on the four potential theories of the distributed practice effect discussed here. At least on the basis of our preliminary analysis, study-phase retrieval, consolidation, and encoding variability theories survive as candidate distributed practice theories, whereas deficient processing theory does not readily survive. Notably, only encoding variability theory has been shown, through mathematical modeling, to produce increases in optimal ISI as retention interval increases. It remains unclear whether consolidation and/or study-phase retrieval theory can produce this effect and whether these results can be reconciled with the empirical challenges that have been arrayed against them, as noted above. Further analytic work is needed to explore in more detail the relationship between potential theories of distributed practice and the finding that optimal ISI increases as retention interval increases.

Educational Implications of Findings

A primary goal of almost all education is to teach material so that it will be remembered for an extended period of time, on the order of at least months and, more often, years. The data described here reaffirm the view (expressed most forcefully by Bahrick, 2005, and Dempster, 1988) that separating learning episodes by a period of at least 1 day, rather than concentrating all learning into one session, is extremely useful for maximizing long-term retention. Every study examined here with a retention interval longer than 1 month (Bahrick, 1979; Bahrick et al., 1993; Bahrick & Phelps, 1987; Cepeda et al., 2005) demonstrated a benefit from distribution of learning across weeks or months, as opposed to learning across a 1-day interval; learning within a single day impaired learning, compared with a 1-day interval between study episodes; learning at one single point in time impaired learning, compared with a several-minute interval between study episodes. The average observed benefit from distributed practice (over massed practice) in these studies was 15%, and it appeared to hold for children (Bloom & Shuell, 1981; Childers & Tomasello, 2002; Edwards, 1917; Fishman, Keller, & Atkinson, 1968; Harzem, Lee, & Miles, 1976) as well as adults. After more than a century of research on spacing, much of it motivated by the obvious practical implications of the phenomenon, it is unfortunate that we cannot say with certainty how long the ISI should be to optimize long-term retention. The present results suggest that the optimal ISI increases as the duration over which information needs to be retained increases. For most practical purposes, this retention interval will be months or years, so the optimal ISI will likely be well in excess of 1 day. Obviously, there is a need for much more detailed study on this point, despite the time-consuming nature of such studies. One question of particular practical interest is whether ISIs that are longer than the optimal ISI produce large decrements in retention or only minor ones. If they produce only minor decrements in retention, then a simple principle “seek to maximize lag wherever possible” may be workable. On the other hand, if these decrements are substantial, then a serious consideration of the expected duration over which memory access will be needed may often be needed if one is to maximize the efficiency of learning.

Analysis Limitations

The present analysis is subject to many of the same limitations present in all meta-analyses (for discussion, see Hedges & Olkin, 1985; Hunter & Schmidt, 1990). For example, there is no way to accurately calculate the number of studies with null findings (i.e., a lack of distributed practice effect), because many studies never reach publication. This “file drawer problem” (Rosenthal, 1979) reflects the reluctance of journals to publish null findings. Hunter and Schmidt (1990) point out that the file drawer problem tends to be a nonissue when large effect sizes are identified, as in the present analysis, because of the enormous ratio of unpublished to published data that would be needed to invalidate a large effect size.

Limitations of Currently Available Data

As noted above, new studies are sorely needed to clarify the effects of interstudy and retention intervals that are educationally relevant, that is, on the order of weeks, months, or years. It is clear from existing studies that the distribution of a given amount of study time over multiday periods produces better long-term retention than study over a few-minute period, but it is unclear how quickly retention drops off when intervals exceed the optimal ISI. If the field of learning and memory is to inform educational practice, what is evidently needed is much less emphasis on convenient single-session studies and much more research with meaningful retention intervals (see Bahrick, 2005, for similar comments).

The effects of nonconstant (i.e., expanding or contracting) learning schedules on retention are still poorly understood. Expanding study intervals rarely seem to produce much harm for recall after long delays, but there is insufficient data to say whether they help. This has not stopped some software developers from assuming that expanding study intervals work better than fixed intervals. For example, Wozniak and Gorzelczyk (1994; see also SuperMemo World, n.d.) offered a “universal formula” designed to space repetitions at an interval that will produce 95% retention, based on Bahrick and Phelps’ (1987) proposal that the ideal spacing interval is the longest ISI before items are forgotten.

We sometimes found it necessary to focus on change in accuracy as a measure, instead of the more traditional effect size measure, because the variance data necessary to compute effect size were lacking in most published results in this area. It was very encouraging to observe that results differed little depending upon
whether accuracy difference or effect size was examined. Future research in the area of distributed practice should report the sample size, means, and standard deviations for each ISI data point, even in cases of no significant difference, so that effect size can be calculated in future meta-analyses (American Psychological Association, 2001). As well, it would be useful if researchers reported pairwise correlations between ISIs, so that dependence between responses can be corrected, whenever the design is within subjects.

Almost all distributed practice data in our analysis (85%) are based on performance of young adults (see Table 10). Although most studies using children show a distributed practice effect, there simply is insufficient data to make strong claims about the similarity between children’s and adults’ responses to distributed practice, when retention interval is 1 day or longer. Until empirical data examining the distributed practice effect in children are collected, using retention intervals of months or years and ISIs of days or months (no usable data meeting these criteria currently exist, to our knowledge), we cannot say for certain that children’s long-term memory will benefit from distributed practice.

Summary

More than 100 years of distributed practice research have demonstrated that learning is powerfully affected by the temporal distribution of study time. More specifically, spaced (vs. massed) learning of items consistently shows benefits, regardless of retention interval, and learning benefits increase with increased time lags between learning presentations. On the other hand, it seems clear that once the interval between learning sessions reaches some relatively long amount of time, further increases either have no effect upon or decrease memory as measured in a later test. The magnitude of the observed distributed practice benefit depends on the joint effects of ISI and retention interval; retention interval influences the peak of this function. Distributing learning across different days (instead of grouping learning episodes within a single day) greatly improves the amount of material retained for sizable periods of time; the literature clearly suggests that distributing practice in this way is likely to markedly improve students’ memory durability over the range of time to which educators typically aspire. We have little doubt that relatively expensive and time-consuming studies involving substantial retention intervals will need to be carried out if practical benefits are to be wrung from distributed practice research; it is hoped that the present review will help researchers to pinpoint where that effort might be the most useful and illuminating.

Table 10

<table>
<thead>
<tr>
<th>Age group</th>
<th>No. of performance differences</th>
<th>No. of effect sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>Elementary school</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Junior high school</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>High school</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Young adult (18–35)</td>
<td>714</td>
<td>97</td>
</tr>
<tr>
<td>Middle-aged adult (36–60)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Older adult (61 +)</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Mixed adult (18 +)</td>
<td>14</td>
<td>9</td>
</tr>
</tbody>
</table>

Note. Ages are in years.

References

References marked with an asterisk indicate studies included in the meta-analysis.

REVIEW OF THE DISTRIBUTED PRACTICE EFFECT

Toppino, T. C., Hará, Y., & Hackman, J. (2002). The spacing effect in the...

Appendix

Effects of Task Type on Distributed Practice

One lingering concern with our lag analyses is whether task type plays a role in the expression of joint effects between ISI and retention interval. Put another way, is it reasonable to expect the joint effects of ISI difference and retention interval to be constant, regardless of task type? We can think of no a priori reason to expect lag effects to vary on the basis of task type. On the other hand, different experimental methodologies, which vary consistently with task type, might reduce our ability to glean the joint effects of ISI difference and retention interval. Specifically, some paradigms provided consistent and accurate manipulation of ISI difference and retention interval, and these well-controlled paradigms were used in most of the experiments with paired associate tasks. In most experiments with paired associate tasks, items separated by a given lag were almost always followed by exactly the same retention interval. Thus, there is no question that ISI and retention interval values used in this meta-analysis were accurate. In contrast, list recall paradigms did not accurately control ISI difference and retention interval, so there is some degree of incorrectness in the ISI difference and retention interval values we used. To illustrate the problem, say items are represented by i_x. The following is a sample list recall paradigm. Lag is always 1 item, and there are no filler items.

The typical primacy and recency buffers have been removed:

\[
i_1 \quad i_2 \quad i_3 \quad i_4 \quad i_5 \quad i_6
\]

retention interval (time = x) recall test (unlimited time given to complete test).

The first feature to notice is that retention interval for items i_1 and i_2 is longer than retention interval for i_5 and i_6. This problem becomes worse when list length is long and retention interval is short. Also, we have presented a best-case scenario. Many list recall paradigms present items i_1-i_6, and then rerandomize item order before re-presenting the entire list. This introduces even more variability, as ISI difference is then variable, as is retention interval. An additional, smaller, problem is that giving unlimited time to recall means that retention interval becomes more variable than if recall time were fixed, as occurs in many paired associate paradigms.

(text continues on page 380)

Figure A1. For paired associate studies in the accuracy difference lag analyses, accuracy difference between all adjacent pairs of interstudy interval (ISI) values from each study, binned by difference in ISI and retention interval and averaged across studies. When surrounded by ISI bins with lower accuracy values, the ISI bin showing the highest accuracy value at each retention interval bin is indicated with an asterisk. Error bars represent one standard error of the mean.

(Appendix continues)
Figure A2. For list recall studies in the accuracy difference lag analyses, accuracy difference between all adjacent pairs of interstudy interval (ISI) values from each study, binned by difference in ISI and retention interval and averaged across studies. When surrounded by ISI bins with lower accuracy values, the ISI bin showing the highest accuracy value at each retention interval bin is indicated with an asterisk. Error bars represent one standard error of the mean.

Table A1
For Paired Associate Data, Shorter and Longer Interstudy Interval (ISI) Range, Retention Interval Range, Percentage Correct at the Shorter and Longer ISI Range, and Statistical Analyses, for Accuracy Difference Lag Analyses

<table>
<thead>
<tr>
<th>ISI range</th>
<th>Retention interval range</th>
<th>% Correct at ISI range</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorter</td>
<td>Longer</td>
<td>Shorter</td>
<td>Longer</td>
</tr>
<tr>
<td>1–10 s</td>
<td>11–29 s</td>
<td>4–59 s</td>
<td>1.1</td>
</tr>
<tr>
<td>11–29 s</td>
<td>1–15 min</td>
<td>4–59 s</td>
<td>2.5</td>
</tr>
<tr>
<td>1–10 s</td>
<td>11–29 s</td>
<td>1 min–2 hr</td>
<td>1.0</td>
</tr>
<tr>
<td>11–29 s</td>
<td>2–28 days</td>
<td>1 min–2 hr</td>
<td>2.8</td>
</tr>
<tr>
<td>30–59 s</td>
<td>1–15 min</td>
<td>1 day</td>
<td>1.3</td>
</tr>
<tr>
<td>1–15 min</td>
<td>1 day</td>
<td>2–28 days</td>
<td>4.5</td>
</tr>
<tr>
<td>1 day</td>
<td>2–28 days</td>
<td>2–28 days</td>
<td>11.0</td>
</tr>
<tr>
<td>1 day</td>
<td>2–28 days</td>
<td>30–2,900 days</td>
<td>6.5</td>
</tr>
<tr>
<td>2–28 days</td>
<td>29–84 days</td>
<td>30–2,900 days</td>
<td>9.7</td>
</tr>
</tbody>
</table>
Figure A3. For paired associate studies in the absolute lag analyses, accuracy, binned by interstudy interval (ISI) and retention interval and averaged across studies. When surrounded by ISI bins with lower accuracy values, the ISI bin showing the highest accuracy value at each retention interval bin is indicated with an asterisk. Error bars represent one standard error of the mean.

Figure A4. For list recall studies in the absolute lag analyses, accuracy, binned by interstudy interval (ISI) and retention interval and averaged across studies. When surrounded by ISI bins with lower accuracy values, the ISI bin showing the highest accuracy value at each retention interval bin is indicated with an asterisk. Error bars represent one standard error of the mean.

(Appendix continues)
To assess the impact of these paradigmatic issues, we have reanalyzed lag data, separating by task type. Figures A1 and A2 show joint effects of ISI difference and retention interval, for paired associate and list recall data, respectively. Table A1 provides quantitative analyses of joint effects of ISI difference and retention interval, for paired associate data. As would be predicted by paradigmatic differences, paired associate data paint a much cleaner qualitative picture of joint effects between ISI difference and retention interval. Unfortunately, this cleaner qualitative picture comes with a less clean quantitative picture, because sample size, and thus power, is reduced as well.

In Figures A3 and A4 we present joint effects of absolute ISI and retention interval, for paired associate and list recall data, respectively. Table A2 provides quantitative analyses of joint effects of absolute ISI and retention interval joint effects. The data once again support an increase in optimal ISI as retention interval increases.

Table A2
For Paired Associate Data, Shorter and Longer Interstudy Interval (ISI) Range, Retention Interval Range, Percentage Correct at the Shorter and Longer ISI Range, and Statistical Analyses, for Absolute Lag Analyses

<table>
<thead>
<tr>
<th>ISI range</th>
<th>Retention interval range</th>
<th>% Correct at ISI Range</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorter</td>
<td>Longer</td>
<td>Shorter</td>
<td>Longer</td>
</tr>
<tr>
<td>1–10 s</td>
<td>30–59 s</td>
<td>2–59 s</td>
<td>51.4</td>
</tr>
<tr>
<td>30–59 s</td>
<td>1 min–3 hr</td>
<td>2–59 s</td>
<td>60.1</td>
</tr>
<tr>
<td>1–10 s</td>
<td>1 min–3 hr</td>
<td>1 min–2 hr</td>
<td>35.9</td>
</tr>
<tr>
<td>1 min–3 hr</td>
<td>2–28 days</td>
<td>1 min–2 hr</td>
<td>56.3</td>
</tr>
<tr>
<td>11–29 s</td>
<td>2–28 days</td>
<td>2–28 days</td>
<td>29.0</td>
</tr>
<tr>
<td>1 min–3 hr</td>
<td>29–168 days</td>
<td>30–2,900 days</td>
<td>27.0</td>
</tr>
</tbody>
</table>

In Figures A3 and A4 we present joint effects of absolute ISI and retention interval, for paired associate and list recall data, respectively. Table A2 provides quantitative analyses of joint effects of absolute ISI and retention interval joint effects. The data once again support an increase in optimal ISI as retention interval increases.

Received April 14, 2004
Revision received July 20, 2005
Accepted September 9, 2005

Low Publication Prices for APA Members and Affiliates

Keeping you up-to-date. All APA Fellows, Members, Associates, and Student Affiliates receive—as part of their annual dues—subscriptions to the American Psychologist and APA Monitor. High School Teacher and International Affiliates receive subscriptions to the APA Monitor, and they may subscribe to the American Psychologist at a significantly reduced rate. In addition, all Members and Student Affiliates are eligible for savings of up to 60% (plus a journal credit) on all other APA journals, as well as significant discounts on subscriptions from cooperating societies and publishers (e.g., the American Association for Counseling and Development, Academic Press, and Human Sciences Press).

Essential resources. APA members and affiliates receive special rates for purchases of APA books, including the Publication Manual of the American Psychological Association, and on dozens of new topical books each year.

Other benefits of membership. Membership in APA also provides eligibility for competitive insurance plans, continuing education programs, reduced APA convention fees, and specialty divisions.

More information. Write to American Psychological Association, Membership Services, 750 First Street, NE, Washington, DC 20002-4242.