Queen's University School of Kinesiology and Health Studies

Course Name: KNPE 449/3.0 Advanced Protein Metabolism	Course Instructor: Dr. Chris McGlory	Contact Hours: Lectures: 1 x 3 hrs / 12 weeks Prerequisite: Level 4 in a KINE Plan and (HLTH 331/3.0 or
Course Description: The aim of this course is to provide a basic understanding of		Exclusion: KNPE 493 topic ID: Advanced Protein Metabolism (W'20; W'21) of
the biological factors that regulate the size of human skeletal muscle. Specific emphasis will be placed on how nutrition and exercise affect skeletal muscle growth/loss in both the athletic and clinical setting. Students will be provided with insight into the use of isotopic labeling of amino acids and other contemporary laboratory-based techniques used to study human skeletal muscle protein turnover.		ctal and letic Course Texts:
 Learning Outcomes: Identify key factors affecting human skeletal muscle protein turnover and gain a cursory knowledge of experimental methods used to study skeletal muscle growth. Critically evaluate strengths and weaknesses of study designs related to experimental research. Independently develop an experimental approach to address an existing knowledge gap in the nutritional and exercise sciences. 		Journal Club Assignment 25% Mid-term 2 15% Grant Proposal 25% Presentations 20% to
Course Outline		
Introduction and course over Amino acids and metabolic t Resistance exercise and pro Exercise, Sex, and Hormone	olic tracers Molecular control of skeletal muscle mass d protein nutrition Mitochondria and skeletal muscle	