Jessica Selinger, PhD

PhD (Simon Fraser University)

MSc (Queen's University)

BSc (Queen's University)


Contact Information

Telephone: 1-650-441-5558
Office: KHS TBD


Undergraduate Courses

KNPE 254 - Biomechanical Analysis of Human Movement

KNPE 261 - Motor Control and Learning


Research Summary

I am interested in the fundamental principles that shape how and why we move the way we do, as well as the application of these principles to improve mobility and overall health. To do so, I combine theoretical modelling, lab-based experiments, and data-driven approaches to study human locomotion and learning. In particular, I seek to understand the neuromechanical control of human walking and how it is adapted to changing tasks, environments, and bodies. Ultimately, the purpose of my work is to design novel rehabilitative strategies and wearable technologies to aid those with mobility impairments.

Current Research Themes:

  • Understanding energetic cost optimization in human locomotion
  • Neural mechanisms and models in locomotor learning
  • Biofeedback for improved learning and rehabilitation
  • Investigating ecological human movement through wearable tech

Graduate Student Opportunities

I am currently accepting new graduate students at the Master's and PhD level. Successful applicants will be encouraged to apply to the Ontario Graduate Scholarship Program and to the National Sciences and Engineering Research Council of Canada. If you are interested in learning more about graduate opportunities, please feel free to contact me.

Recent Publications

J.D. Wong, OConnor, J.C. Selinger and J.M. Contribution of blood oxygen and carbon dioxide 
sensing to the energetic optimization of human walking. Journal of Neurophysiology 118(2):1425-1433, 

J.C. Selinger and J.M. Donelan. Myoelectric Control for Adaptable Biomechanical Energy Harvesting. 
IEEE Transactions on Neural Systems and Rehabilitation Engineering 24(3): 364-373, 2016. 

J.C. Selinger, S.M. O’Connor, J.D. Wong, and J.M. Donelan. Humans Can Continuously Optimize Energetic Cost during Walking. Current Biology 25: 2452-2456, 2015. 

W. Felt, J.C. Selinger, J.M. Donelan and C.D. Remy. ‘Body-in-the-Loop’: Optimizing Device Parameters 
Using Measures of Instantaneous Energetic Cost. PLoS ONE 10(8), 2015. 

J.C. Selinger and J.M. Donelan. Estimating instantaneous energetic cost during non-steady state gait. 
Journal of Applied Physiology 117(11): 1406-1415, 2014.